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Abstract

We present a class of graphical models for directly representing the joint cumula-
tive distribution function (CDF) of many random variables, called cumulative distribution
networks (CDNs). Unlike graphs for probability density and mass functions, in a CDN,
the marginal probabilities for any subset of variables are obtained by computing limits of
functions in the model. We will show that the conditional independence properties in a
CDN are distinct from the conditional independence properties of directed, undirected and
factor graphs, but include the conditional independence properties of bidirected graphs.
In order to perform inference in such models, we describe the ‘derivative-sum-product’
(DSP) message-passing algorithm in which messages correspond to derivatives of the joint
CDF. We will then apply CDNs to the problem of learning to rank players in multiplayer
team-based games and suggest several future directions for research.

Keywords: Graphical models, cumulative distribution function, message-passing algo-
rithm, inference

1. Introduction

Probabilistic graphical models provide a pictorial means of specifying a joint probability den-
sity function (PDF) defined over many continuous random variables, the joint probability
mass function (PMF) of many discrete random variables, or a joint probability distribution
defined over a mixture of continuous and discrete variables. Each variable in the model
corresponds to a node in a graph and edges between nodes in the graph convey statistical
dependence relationships between the variables in the model. The graphical formalism al-
lows one to obtain the independence relationships between random variables in a model by
inspecting the corresponding graph, where the separation of nodes in the graph implies a
particular conditional independence relationship between the corresponding variables.

A consequence of representing independence constraints between subsets of variables
using a graph is that the joint probability often factors into a product of functions defined
over subsets of neighboring nodes in the graph. Typically, this allows us to decompose a large
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multivariate distribution into a product of simpler functions, so that the task of inference
and estimation of such models can also be simplified and efficient algorithms for performing
these tasks can be implemented. Often, a complex distribution over observed variables
can be constructed using a graphical model with latent variables introduced, where the
joint probability over the observed variables is obtained by marginalization over the latent
variables. The model with additional latent variables has the advantage of having a more
compact factorized form as compared to that for the joint probability over the observed
variables. However, this often comes at the cost of a significantly higher computational
cost for estimation and inference, as additional latent variables often require one to either
approximate intractable marginalization operations (Minka, 2001) or to sample from the
model using Markov Chain Monte Carlo (MCMC) methods (Neal, 1993). Furthermore,
there is also the problem that there are possibly an infinite number of latent variable
models associated with any given model defined over observable variables, so that adding
latent variables for any given application can often present difficulties in terms of model
identifiability, which is desirable in the case in which one wishes to interpret the parameters
in a graphical model. These issues may hamper the applicability of graphical models for
many real-world problems in the presence of latent variables.

Another possible limitation of many graphical models is that the joint PDF/PMF itself
might not be appropriate as a probability model for certain applications. For example, in
learning to rank, the cumulative distribution function (CDF) is a probabilistic representation
that arises naturally as a probability measure over inequality events of the type {𝑋 ≤ 𝑥}.
The joint CDF lends itself to such problems that are easily described in terms of inequality
events in which statistical dependence relationships also exist among events. An example of
this type of problem is that of predicting multiplayer game outcomes with a team structure
(Herbrich, Minka and Graepel, 2007). In contrast to the canonical problems of classification
or regression, in learning to rank we are required to learn some mapping from inputs to
inter-dependent output variables so that we may wish to model both stochastic orderings
between variable states and statistical dependence relationships between variables.

Given the above, here we present a class of graphical models called cumulative distribu-
tion networks (CDN) in which we represent the joint CDF of a set of observed variables. As
we will show, CDNs can be viewed as graphical models for a subset of joint probability dis-
tributions that could be obtained by exact marginalization of latent variables in a directed
graphical model. Thus, CDNs can be viewed as providing a means to construct complex
distributions over observed variables without the need to explicitly introduce latent vari-
ables and then marginalize. The resulting model consists of a factorized form for the joint
CDF, where the principal operations required for answering probabilistic queries and for
marginalization consist of differentiation and computing limits respectively, in contrast to
summation/integration in graphical models for PDFs with latent variables. Furthermore,
the parameterization of the model as a joint CDF has the advantage that the global nor-
malization constraint can be enforced locally for each function in the CDN, unlike the case
of undirected graphs. We will present the basic properties of CDNs and show that the rules
for ascertaining conditional independence relationships among variables in a CDN are dis-
tinct from the rules in directed, undirected and factor graphs (Pearl, 1988; Lauritzen, 1996;
Kschischang, Frey and Loeliger, 2001). We will show that the conditional independence
properties in a CDN include, but are not limited to, the conditional independence prop-
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erties for bidirected graphs (Drton and Richardson, 2008; Richardson and Spirtes, 2002;
Richardson, 2003).

We will then discuss the problem of performing inference under CDNs in which the
principal challenge is to compute the derivatives of the joint CDF. To this end we will de-
scribe a message-passing algorithm for inference in CDNs called the derivative-sum-product
algorithm based on previous work (Huang and Frey, 2008; Huang, 2009). To demonstrate
the applicability of CDNs, we will use the message-passing algorithm for inference in order
to apply CDNs to the problem of learning to rank, where we will show that CDFs arise nat-
urally as a probability models in which it is easy to specify stochastic ordering constraints
amongst variables in the model.

1.1 Notation

Before we proceed, we will establish some notation to be used throughout the paper. We
will denote bipartite graphs as 𝒢 = (𝑉, 𝑆,𝐸) where 𝑉, 𝑆 are two disjoint sets of nodes and
𝐸 ⊆ {𝑉 × 𝑆, 𝑆 × 𝑉 } is a set of edges that correspond to ordered pairs (𝛼, 𝑠) or (𝑠, 𝛼) for
𝛼 ∈ 𝑉 and 𝑠 ∈ 𝑆. We will denote neighboring sets 𝒩 (𝛼) and 𝒩 (𝑠) as

𝒩 (𝛼) = {𝑠 ∈ 𝑆 : (𝛼, 𝑠) ∈ 𝐸}
𝒩 (𝑠) = {𝛼 ∈ 𝑉 : (𝛼, 𝑠) ∈ 𝐸}.

Furthermore, let 𝒩 (𝐴) = ∪𝛼∈𝐴𝒩 (𝛼).
Throughout the paper we will use boldface notation to denote vectors and/or matrices.

Scalar and vector random variables will be denoted as 𝑋𝛼 and X𝐴 respectively where 𝛼 is a
node in a graph 𝒢 and 𝐴 denotes a set of nodes in 𝒢. The notation ∣𝐴∣, ∣x∣, ∣X∣ will denote
the cardinality, or number of elements, in set 𝐴 and vectors x,X respectively. We will also

denote the mixed partial derivative/finite difference as ∂x𝐴

[
⋅
]
, where the mixed derivative

here is taken with respect to arguments 𝑥𝛼 ∀ 𝛼 ∈ 𝐴.

1.2 Cumulative distribution functions

Here we provide a brief definition for the joint CDF 𝐹 (x) defined over random variables X,
denoted individually as 𝑋𝛼. The joint cumulative distribution function 𝐹 (x) is then defined
as the function 𝐹 : ℝ∣X∣ 7→ [0, 1] such that

𝐹 (x) = ℙ

[ ∩
𝑋𝛼∈X

{
𝑋𝛼 ≤ 𝑥𝛼

}] ≡ ℙ
[
X ≤ x

]
.

Thus the CDF is a probability defined over events {𝑋𝛼 ≤ 𝑥𝛼}. Alternately, the CDF can
be defined in terms of the joint probability density function (PDF) or probability mass
function (PMF) 𝑃 (x) via

𝐹 (x) =

∫ x

−∞
𝑃 (u) 𝑑u,

where 𝑃 (x), if it exists, satisfies 𝑃 (x) ≥ 0,
∫
x 𝑃 (x) 𝑑x = 1 and 𝑃 (x) = ∂x

[
𝐹 (x)

]
where

∂x

[
⋅
]
denotes the higher-order mixed derivative operator ∂𝑥1,⋅⋅⋅ ,𝑥𝐾

[
⋅
]
≡ ∂𝐾

∂𝑥1 ⋅ ⋅ ⋅ ∂𝑥𝐾 for

x = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝐾 ] ∈ ℝ𝐾 .
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A function 𝐹 is a CDF for some probability ℙ if and only if 𝐹 satisfies the following
conditions:

1. The CDF 𝐹 (x) converges to unity as all of its arguments tend to ∞, or

𝐹 (∞) ≡ lim
x→∞𝐹 (x) = 1.

2. The CDF 𝐹 (x) converges to 0 as any of its arguments tends to −∞, or

𝐹 (−∞,x ∖ 𝑥𝛼) ≡ lim
𝑥𝛼→−∞𝐹 (𝑥𝛼,x ∖ 𝑥𝛼) = 0 ∀ 𝑋𝛼 ∈ X.

3. The CDF 𝐹 (x) is monotonically non-decreasing, so that

𝐹 (x) ≤ 𝐹 (y) ∀ x ≤ y, x,y ∈ ℝ∣X∣.

where x ≤ y denotes elementwise inequality of all the elements in vectors x,y.

4. The CDF 𝐹 (x) is right-continuous, so that

lim
𝝐→0+

𝐹 (x+ 𝝐) ≡ 𝐹 (x) ∀ x ∈ ℝ∣X∣.

A proof of forward implication in the above can be found in (Wasserman, 2004; Papoulis
and Pillai, 2001).

Proposition 1.1. Let 𝐹 (x𝐴,x𝐵) be the joint CDF for variables X where X𝐴,X𝐵 for a
partition of the set of variables X. The joint probability of the event {X𝐴 ≤ x𝐴} is then
given in terms of 𝐹 (x𝐴,x𝐵) as

𝐹 (x𝐴) ≡ ℙ
[
X𝐴 ≤ x𝐴

]
= lim

x𝐵→∞𝐹 (x𝐴,x𝐵). (1)

□
The above proposition follows directly from the definition of a CDF in which

lim
x𝐵→∞

∩
𝛼∈𝐴∪𝐵

{𝑋𝛼 ≤ 𝑥𝛼} =
∩
𝛼∈𝐴
{𝑋𝛼 ≤ 𝑥𝛼}. (2)

Thus, marginal CDFs of the form 𝐹 (x𝐴) can be computed from the joint CDF by computing
limits.

1.3 Conditional cumulative distribution functions

In the sequel we will be making use of the concept of a conditional CDF for some subset of
variables X𝐴 conditioned on event 𝑀 . We formally define the conditional CDF below.

Definition 1.1. Let 𝑀 be an event with ℙ[𝑀 ] > 0. The conditional CDF 𝐹 (x𝐴 ∣ 𝑀)
conditioned on event 𝑀 is defined as

𝐹 (x𝐴 ∣𝑀) ≡ ℙ
[
X𝐴 ≤ x𝐴 ∣𝑀

]
=

ℙ
[
{X𝐴 ≤ x𝐴} ∩𝑀

]
ℙ
[
𝑀
] . (3)

□
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We will now find the above conditional CDF for different types of events 𝑀 . .

Lemma 1.2. Let 𝐹 (x𝐶) be a marginal CDF obtained from the joint CDF 𝐹 (x) as given
by Proposition 1.1 for some X𝐶 ⊆ X. Consider some variable set X𝐴 ⊆ X. Let 𝑀 =
𝜔(x𝐶) ≡ {X𝐶 ≤ x𝐶} for X𝐶 ⊂ X. If 𝐹 (x𝐶) > 0, then 𝐹 (x𝐴∣𝜔(x𝐶)) ≡ 𝐹 (x𝐴∣X𝐶 ≤ x𝐶) =
𝐹 (x𝐴,x𝐶)

𝐹 (x𝐶)
. □

Thus a conditional CDF of the form 𝐹 (x𝐴∣𝜔(x𝐶)) can be obtained by taking ratios of
joint CDFs, which consists of computing limits to obtain the required marginal CDFs. It
follows from Lemma 1.2 that marginalization over variables X𝐶 can be viewed as a special
case of conditioning on X𝐶 <∞.

To compute conditional CDFs of the form 𝐹 (x𝐴∣𝑥𝛽) where we instead condition on
observing 𝑥𝛽 , we need to differentiate the joint CDF, as we now show.

Lemma 1.3. Consider some variable set X𝐴 ⊆ X. Let 𝑀 = {𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 +
𝜖} with 𝜖 > 0 for some scalar random variable 𝑋𝛽 /∈ X𝐴. If 𝐹 (𝑥𝛽) and 𝐹 (x𝐴, 𝑥𝛽)

are differentiable with respect to 𝑥𝛽 so that ∂𝑥𝛽

[
𝐹 (𝑥𝛽)

]
and ∂𝑥𝛽

[
𝐹 (x𝐴, 𝑥𝛽)

]
exist with

∂𝑥𝛽

[
𝐹 (𝑥𝛽)

]
> 0, then the conditional CDF 𝐹 (x𝐴∣𝑥𝛽) ≡ lim

𝜖→0+
𝐹 (x𝐴∣𝑥𝛽 < 𝑋𝛽 < 𝑥𝛽 + 𝜖) =

lim
𝜖→0+

ℙ
[
{X𝐴 ≤ x𝐴} ∩ {𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖}

]
ℙ
[
𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖

] is given by

𝐹 (x𝐴∣𝑥𝛽) =
∂𝑥𝛽

[
𝐹 (x𝐴, 𝑥𝛽)

]
∂𝑥𝛽

[
𝐹 (𝑥𝛽)

] ∝ ∂𝑥𝛽

[
𝐹 (x𝐴, 𝑥𝛽)

]
. (4)

Proof. We can write

𝐹 (x𝐴∣𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖) =
ℙ
[
{X𝐴 ≤ x𝐴} ∩ {𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖}

]
ℙ
[
𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖

]
=

1
𝜖ℙ
[
{X𝐴 ≤ x𝐴} ∩ {𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖}

]
1
𝜖ℙ
[
𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖

] =

𝐹 (x𝐴,𝑥𝛽+𝜖)−𝐹 (x𝐴,𝑥𝛽)
𝜖

𝐹 (𝑥𝛽+𝜖)−𝐹 (𝑥𝛽)
𝜖

.

(5)

Taking limits, and given differentiability of both 𝐹 (𝑥𝛽) and 𝐹 (x𝐴, 𝑥𝛽) with respect to 𝑥𝛽 ,
the conditional CDF 𝐹 (x𝐴∣𝑥𝛽) is given by

𝐹 (x𝐴∣𝑥𝛽) ≡
lim
𝜖→0+

𝐹 (x𝐴, 𝑥𝛽 + 𝜖)− 𝐹 (x𝐴, 𝑥𝛽)

𝜖

lim
𝜖→0+

𝐹 (𝑥𝛽 + 𝜖)− 𝐹 (𝑥𝛽)
𝜖

=
∂𝑥𝛽

[
𝐹 (x𝐴, 𝑥𝛽)

]
∂𝑥𝛽

[
𝐹 (𝑥𝛽)

] ∝ ∂𝑥𝛽

[
𝐹 (x𝐴, 𝑥𝛽)

]
, (6)

where the proportionality constant does not depend on x𝐴.
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Lemma 1.4. Let 𝑀 = {x𝐶 < X𝐶 ≤ x𝐶 + 𝝐} ≡ ∩𝛾∈𝐶{𝑥𝛾 < 𝑋𝛾 ≤ 𝑥𝛾 + 𝜖} with 𝜖 > 0
for X𝐶 ⊂ X and 𝝐 = [𝜖 ⋅ ⋅ ⋅ 𝜖]𝑇 ∈ ℝ∣X𝐶 ∣. Consider the set of random variables X𝐴 ⊂
X with X𝐶 ∩ X𝐴 = ∅. If both ∂x𝐶

[
𝐹 (x𝐶)

]
and ∂x𝐶

[
𝐹 (x𝐴,x𝐶)

]
exist for all x𝐶 with

∂x𝐶

[
𝐹 (x𝐶)

]
> 0, then the conditional CDF 𝐹 (x𝐴∣x𝐶) ≡ lim

𝝐→0+
𝐹 (x𝐴∣x𝐶 < X𝐶 ≤ x𝐶 +𝝐) =

lim
𝝐→0+

ℙ
[
{X𝐴 ≤ x𝐴} ∩ {x𝐶 < X𝐶 ≤ x𝐶 + 𝝐}

]
ℙ
[
x𝐶 < X𝐶 ≤ x𝐶 + 𝝐

] is given by

𝐹 (x𝐴∣x𝐶) =
∂x𝐶

[
𝐹 (x𝐴,x𝐶)

]
∂x𝐶

[
𝐹 (x𝐶)

] ∝ ∂x𝐶

[
𝐹 (x𝐴,x𝐶)

]
, (7)

where ∂x𝐶

[
⋅
]
is a mixed derivative operator with respect to {𝑥𝛾 , 𝛾 ∈ 𝐶}.

Proof. We can proceed by induction on variable set X𝐶 with the base case given by Lemma
1.2. Let X𝐶 = X𝐶′∪𝑋𝛽 with 𝑋𝛽 /∈ X𝐶′∪X𝐴. Let𝑀

′ ≡𝑀 ′(𝝃) = {x𝐶′ ≤ X𝐶′ ≤ x𝐶′+𝝃} =
∩𝛾∈𝐶′{𝑥𝛾 < 𝑋𝛾 ≤ 𝑥𝛾 + 𝜉} and 𝑀 ≡𝑀(𝝃, 𝜖) =𝑀 ′ ∩ {𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖} with 𝝐 = [𝝃𝑇 𝜖]T.

Suppose that ∂x𝐶′

[
𝐹 (x𝐶′)

]
> 0 and we have computed

𝐹 (x𝐴, 𝑥𝛽 ∣x𝐶′) ≡ lim
𝝃→0+

𝐹
(
x𝐴, 𝑥𝛽 ∣𝑀 ′(𝝃)

)
=
∂x𝐶′

[
𝐹 (x𝐴, 𝑥𝛽 ,x𝐶′)

]
∂x𝐶′

[
𝐹 (x𝐶′)

] (8)

and

𝐹 (𝑥𝛽 ∣x𝐶′) ≡ lim
𝝃→0+

𝐹
(
𝑥𝛽 ∣𝑀 ′(𝝃)

)
=
∂x𝐶′

[
𝐹 (𝑥𝛽 ,x𝐶′)

]
∂x𝐶′

[
𝐹 (x𝐶′)

] . (9)

Then we can write

𝐹 (x𝐴 ∣𝑀) =
ℙ
[
{X𝐴 ≤ x𝐴} ∩ {𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖} ∣𝑀 ′

]
ℙ
[
𝑥𝛽 < 𝑋𝛽 ≤ 𝑥𝛽 + 𝜖 ∣𝑀 ′

] =

𝐹 (x𝐴,𝑥𝛽+𝜖∣𝑀 ′)−𝐹 (x𝐴,𝑥𝛽 ∣𝑀 ′)
𝜖

𝐹 (𝑥𝛽+𝜖∣𝑀 ′)−𝐹 (𝑥𝛽 ∣𝑀 ′)
𝜖

.

(10)

Thus, since ∂x𝐶

[
𝐹 (x𝐶)

]
> 0 by hypothesis, we obtain

𝐹 (x𝐴∣x𝐶) = lim
𝜖→0+,𝝃→0+

𝐹 (x𝐴,𝑥𝛽+𝜖∣𝑀 ′)−𝐹 (x𝐴,𝑥𝛽 ∣𝑀 ′)
𝜖

𝐹 (𝑥𝛽+𝜖∣𝑀 ′)−𝐹 (𝑥𝛽 ∣𝑀 ′)
𝜖

=
lim
𝜖→0+

𝐹 (x𝐴, 𝑥𝛽 + 𝜖∣x𝐶′)− 𝐹 (x𝐴, 𝑥𝛽 ∣x𝐶′)

𝜖

lim
𝜖→0+

𝐹 (𝑥𝛽 + 𝜖∣x𝐶′)− 𝐹 (𝑥𝛽 ∣x𝐶′)

𝜖

=
∂𝑥𝛽 ,x𝐶′

[
𝐹 (x𝐴, 𝑥𝛽 ,x𝐶′)

]
∂𝑥𝛽 ,x𝐶′

[
𝐹 (𝑥𝛽 ,x𝐶′)

] =
∂x𝐶

[
𝐹 (x𝐴,x𝐶)

]
∂x𝐶

[
𝐹 (x𝐶)

] . (11)
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Thus a conditional CDF of the form 𝐹 (x𝐴∣x𝐶) can be obtained by differentiation of
the joint CDF. By Schwarz’s Theorem this differentiation is invariant to the order in which
variables are processed provided that the derivatives required to compute 𝐹 (x𝐴∣x𝐶) exist
and are continuous.

2. Cumulative distribution networks

Graphical models allow us to simplify the computations required for obtaining conditional
probabilities of the form 𝑃 (x𝐴∣x𝐵) or 𝑃 (x𝐴) by allowing us to model conditional indepen-
dence constraints in terms of graph separation constraints. However, for many applications
it may be desirable to compute other conditional and marginal probabilities such as prob-
abilities of events of the type {X ≤ x}. Here we will present the cumulative distribution
network (CDN), which is a graphical framework for directly modelling the joint cumula-
tive distribution function, or CDF. With the CDN, we can thus expand the set of possible
probability queries so that in addition to formulating queries as conditional/marginal prob-
abilities of the form 𝑃 (x𝐴) and 𝑃 (x𝐴∣x𝐵), we can also compute probabilities of the form

𝐹 (x𝐴∣𝜔(x𝐵)), 𝐹 (x𝐴∣x𝐵), 𝑃 (x𝐴∣𝜔(x𝐵)) and 𝐹 (x𝐴), where 𝐹 (u) ≡ ℙ
[
U ≤ u

]
is a CDF and

we denote the inequality event {U ≤ u} using 𝜔(x𝑈 ). Examples of this new type of query
could be “Given that the drug dose was less than 1 mg, what is the probability of the pa-
tient living at least another year?”, or “Given that a person prefers one brand of soda over
another, what is the probability of that person preferring one type of chocolate over an-
other?”. A significant advantage with CDNs is that the graphical representation of the joint
CDF may naturally allow for queries which would otherwise be difficult, if not intractable,
to compute under directed, undirected and factor graphical models for PDFs/PMFs.

Here we will define the CDN and we will show that the conditional independence prop-
erty in such graphical models are distinct from the properties for directed, undirected and
factor graphs. We will then show that the conditional independence properties in CDNs
include the properties of bidirected graphs (Drton and Richardson, 2008; Richardson, 2003).
Finally, we will show that CDNs provide a tractable means of parameterizing models for
learning to rank in which we can construct multivariate CDFs from a product of CDFs
defined over subsets of variables.

Definition 2.1. The cumulative distribution network (CDN) is an undirected bipartite
graphical model consisting of a bipartite graph 𝒢 = (𝑉, 𝑆,𝐸), where 𝑉 denotes variable
nodes and 𝑆 denotes factor nodes, with edges in 𝐸 connecting factor nodes to variable
nodes. The CDN also includes a specification of functions 𝜙𝑠(x𝑠) for each function node
𝑠 ∈ 𝑆, where x𝑠 ≡ x𝒩 (𝑠), ∪𝑠∈𝑆𝒩 (𝑠) = 𝑉 and each function 𝜙𝑠 : ℝ∣𝒩 (𝑠)∣ 7→ [0, 1] satisfies
the properties of a CDF. The joint CDF over the variables in the CDN is then given by the
product over CDFs 𝜙𝑠 : ℝ∣𝒩 (𝑠)∣ 7→ [0, 1], or

𝐹 (x) =
∏
𝑠∈𝑆

𝜙𝑠(x𝑠),

where each CDF 𝜙𝑠 is defined over neighboring variable nodes 𝒩 (𝑠). □

An example of a CDN defined over three variable nodes with four CDN function nodes
is shown in Figure 1, where the joint CDF over three variables 𝑋,𝑌, 𝑍 is given by

7
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𝐹 (𝑥, 𝑦, 𝑧) = 𝜙𝑎(𝑥, 𝑦)𝜙𝑏(𝑥, 𝑦, 𝑧)𝜙𝑐(𝑦, 𝑧)𝜙𝑑(𝑧).

In the CDN, each function node (depicted as a diamond) corresponds to one of the functions
𝜙𝑠(x𝑠) in the model for the joint CDF 𝐹 (x). Thus, one can think of the CDN as a factor
graph for modelling the joint CDF instead of the joint PDF. However, as we will see shortly,
this leads to a different set of conditional independence properties as compared to the
conditional independence properties of directed, undirected and factor graphs.

Figure 1: A cumulative distribution network (CDN) defined over three variables and four functions.

Since the CDN is a graphical model for the joint CDF, the functions in the CDN must
be such that 𝐹 (x) is a CDF for some probability ℙ. The following lemma establishes a
sufficient condition that the CDN functions 𝜙𝑠 be themselves CDFs in order for 𝐹 to be a
CDF.

Lemma 2.1. If all functions 𝜙𝑠(x𝑠) satisfy the properties of a CDF, then the product∏
𝑠∈𝑆

𝜙𝑠(x𝑠) also satisfies the properties of a CDF. □

Proof. If for all 𝑠 ∈ 𝑆, we have lim
x𝑠→∞𝜙𝑠(x𝑠) = 1, then lim

x→∞
∏
𝑠∈𝑆

𝜙𝑠(x𝑠) = 1. Furthermore, if

for any given 𝛼 ∈ 𝑉 and for 𝑠 ∈ 𝒩 (𝛼), we have lim
𝑥𝛼→−∞𝜙𝑠(x𝑠) = 0, then lim

𝑥𝛼→−∞
∏
𝑠∈𝑆

𝜙𝑠(x𝑠) =

0.
To show that the product of monotonically non-decreasing functions is monotonically

non-decreasing, we note that x𝑠 < y𝑠 for all 𝑠 ∈ 𝑆 iff x < y, since ∪𝑠∈𝑆𝒩 (𝑠) = 𝑉 . Thus if
we have 𝜙𝑠(x𝑠) ≤ 𝜙𝑠(y𝑠) ∀ x𝑠 < y𝑠 for all 𝑠 ∈ 𝑆, we can then write

𝐹 (x) =
∏
𝑠∈𝑆

𝜙𝑠(x𝑠) ≤
∏
𝑠∈𝑆

𝜙𝑠(y𝑠) = 𝐹 (y).

Finally, a product of right-continuous functions is also right-continuous. Thus if all of the
functions 𝜙𝑠(x𝑠) satisfy the properties of a CDF, then the product of such functions also
satisfies the properties of a CDF.

Although the condition that each of the 𝜙𝑠 functions be a CDF is sufficient for the overall
product to satisfy the properties of a CDF, we emphasize that it is not a necessary condition,
as one could construct a function that satisfies the properties of a CDF from a product of
functions that are not CDFs. The sufficient condition above ensures, however, that we can
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construct CDNs by multiplying together CDFs to obtain another CDF. Furthermore, the
above definition and theorem do not assume differentiability of the CDF or of the CDN
functions: the following proposition shows that differentiability and non-negativity of the
derivatives of functions 𝜙𝑠 with respect to all neighboring variables in 𝒩 (𝑠) imply both
differentiability and monotonicity of the joint CDF 𝐹 (x). In the sequel we will assume
that whenever CDN functions are differentiable, the order in which their derivatives are
computed does not matter (Schwarz’ Theorem).

Proposition 2.2. If the mixed derivatives ∂x𝐴

[
𝜙𝑠(x𝑠)

]
satisfy ∂x𝐴

[
𝜙𝑠(x𝑠)

]
≥ 0 for all

𝑠 ∈ 𝑆 and 𝐴 ⊆ 𝒩 (𝑠), then

∙ ∂x𝐶

[
𝐹 (x)

]
≥ 0 for all 𝐶 ⊆ 𝑉

∙ 𝐹 (x) ≤ 𝐹 (y) for all x < y.

∙ 𝐹 (x) is differentiable.

□

Proof. A product of differentiable functions is differentiable and so 𝐹 (x) is differentiable.

To show that ∂x𝐶

[
𝐹 (x)

]
≥ 0 ∀ 𝐶 ⊆ 𝑉 , we can group the functions 𝜙𝑠(x𝑠) arbitrarily into

two functions 𝑔(x) and ℎ(x) so that 𝐹 (x) = 𝑔(x)ℎ(x). The goal here will be to show that

if all derivatives ∂x𝐴

[
𝑔(x)

]
and ∂x𝐴

[
ℎ(x)

]
are non-negative, then ∂x𝐴

[
𝐹 (x)

]
must also be

non-negative. For all 𝐶 ⊆ 𝑉 , applying the product rule to 𝐹 (x) = 𝑔(x)ℎ(x) yields

∂x𝐶

[
𝐹 (x)

]
=
∑
𝐴⊆𝐶

∂x𝐴

[
𝑔(x)

]
∂x𝐶∖𝐴

[
ℎ(x)

]
,

so if ∂x𝐴

[
𝑔(x)

]
, ∂x𝐶∖𝐴

[
ℎ(x)

]
≥ 0 for all 𝐴 ⊆ 𝐶 then ∂x𝐶

[
𝐹 (x)

]
≥ 0. By recursively applying

this rule to each of the functions 𝑔(x), ℎ(x) until we obtain sums over terms involving

∂x𝐴

[
𝜙𝑠(x𝑠)

]
∀ 𝐴 ⊆ 𝒩 (𝑠), we see that if ∂x𝐴

[
𝜙𝑠(x𝑠)

]
≥ 0, then ∂x𝐶

[
𝐹 (x)

]
≥ 0 ∀ 𝐶 ⊆ 𝑉 .

Now, ∂x𝐶

[
𝐹 (x)

]
≥ 0 for all 𝐶 ⊆ 𝑉 implies that ∂𝑥𝛼

[
𝐹 (x)

]
≥ 0 for all 𝛼 ∈ 𝑉 . By the

Mean Value Theorem for functions of several variables, it then follows that if x < y, then

𝐹 (y)− 𝐹 (x) =
∑
𝛼∈𝑉

∂𝑧𝛼

[
𝐹 (z)

]
(𝑦𝛼 − 𝑥𝛼) ≥ 0,

and so 𝐹 (x) is monotonic.

The above ensures differentiability and monotonicity of the joint CDF through con-
straining the derivatives of each of the CDN functions. We note that although it is merely
sufficient for the first order derivatives to be non-negative in order for 𝐹 (x) to be mono-
tonic, the condition that the higher order mixed derivatives of the functions 𝜙𝑠(x𝑠) be
non-negative also implies non-negativity of the first order derivatives. Thus in the sequel,
whenever we assume differentiability of CDN functions, we will assume that for all 𝑠 ∈ 𝑆,
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all mixed derivatives of 𝜙𝑠(x𝑠) with respect to any and all subsets of argument variables
are non-negative.

Having described the above conditions on CDN functions, we will now provide some
examples of CDNs constructed from a product of CDFs.

Figure 2: A CDN defined over two variables 𝑋 and 𝑌 with functions 𝐺1(𝑥, 𝑦), 𝐺2(𝑥, 𝑦).
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Figure 3: a) Joint probability density function 𝑃 (𝑥, 𝑦) corresponding to the distribution func-
tion 𝐹 (𝑥, 𝑦) using bivariate Gaussian CDFs as CDN functions; b),c) The PDFs corresponding to

∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)

]
and ∂𝑥,𝑦

[
𝐺2(𝑥, 𝑦)

]
.

Example 2.1 (Product of bivariate Gaussian CDFs). As a simple example of a CDN,
consider two random variables 𝑋 and 𝑌 with joint CDF modeled by the CDN in Figure 2,
so that 𝐹 (𝑥, 𝑦) = 𝐺1(𝑥, 𝑦)𝐺2(𝑥, 𝑦) with

𝐺1(𝑥, 𝑦) = Φ

([
𝑥
𝑦

]
;𝝁1,Σ1

)
, 𝝁1 =

[
𝜇𝑥,1
𝜇𝑦,1

]
, Σ1 =

[
𝜎2𝑥,1 𝜌1𝜎𝑥,1𝜎𝑦,1

𝜌1𝜎𝑥,1𝜎𝑦,1 𝜎2𝑦,1

]
,

𝐺2(𝑥, 𝑦) = Φ

([
𝑥
𝑦

]
;𝝁2,Σ2

)
, 𝝁2 =

[
𝜇𝑥,2
𝜇𝑦,2

]
, Σ2 =

[
𝜎2𝑥,2 𝜌2𝜎𝑥,2𝜎𝑦,2

𝜌2𝜎𝑥,2𝜎𝑦,2 𝜎2𝑦,2

]
,

where Φ(⋅;m,S) is the multivariate Gaussian CDF with mean vector m and covariance S.
Taking derivatives, the density 𝑃 (𝑥, 𝑦) is given by

𝑃 (𝑥, 𝑦) = ∂𝑥,𝑦

[
𝐹 (𝑥, 𝑦)

]
= ∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)𝐺2(𝑥, 𝑦)

]
= 𝐺1(𝑥, 𝑦)∂𝑥,𝑦

[
𝐺2(𝑥, 𝑦)

]
+ ∂𝑥

[
𝐺1(𝑥, 𝑦)

]
∂𝑦

[
𝐺2(𝑥, 𝑦)

]
+ ∂𝑦

[
𝐺1(𝑥, 𝑦)

]
∂𝑥

[
𝐺2(𝑥, 𝑦)

]
+ ∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)

]
𝐺2(𝑥, 𝑦).
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As functions 𝐺1, 𝐺2 are Gaussian CDFs, the above derivatives can be expressed in terms of
Gaussian CDF and PDFs. For example,

∂𝑥

[
𝐺1(𝑥, 𝑦)

]
=

∫ 𝑦

−∞
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

([
𝑥
𝑡

]
;𝝁1,Σ1

)
𝑑𝑡

= 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥;𝜇𝑥,1, 𝜎
2
𝑥,1)

∫ 𝑦

−∞
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑡;𝜇𝑦∣𝑥,1, 𝜎2𝑦∣𝑥,1) 𝑑𝑡

= 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥;𝜇𝑥,1, 𝜎
2
𝑥,1)Φ(𝑦;𝜇𝑦∣𝑥,1, 𝜎

2
𝑦∣𝑥,1) (12)

where

𝜇𝑦∣𝑥,1 = 𝜇𝑦,1 + 𝜌1
𝜎𝑦,1
𝜎𝑥,1

(𝑥− 𝜇𝑥,1)

𝜎2𝑦∣𝑥,1 = (1− 𝜌21)𝜎2𝑦,1 (13)

Other derivatives can be obtained similarly. The resulting joint PDF 𝑃 (𝑥, 𝑦) obtained by
differentiating the CDF is shown in Figure 3(a), where the CDN function parameters are
given by 𝜇𝑥,1 = 0, 𝜇𝑥,2 = 4, 𝜇𝑦,1 = 3, 𝜇𝑦,2 = 4, 𝜎𝑥,1 =

√
3, 𝜎𝑥,2 =

√
5, 𝜎𝑦,1 = 1, 𝜎𝑦,2 =√

10, 𝜌1 = 0.9, 𝜌2 = −0.6. The PDFs corresponding to ∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)

]
and ∂𝑥,𝑦

[
𝐺2(𝑥, 𝑦)

]
are shown in Figures 3(b) and 3(c). □

The next example provides an illustration of the use of copula functions for constructing
multivariate CDFs under the framework of CDNs.
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Figure 4: a) Joint probability density function 𝑃 (𝑥, 𝑦) corresponding to the distribution function
𝐹 (𝑥, 𝑦) using bivariate Gumbel copulas as CDN functions, with Student’s-t and Gaussian marginal

input CDFs; b),c) The PDFs corresponding to ∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)

]
and ∂𝑥,𝑦

[
𝐺2(𝑥, 𝑦)

]
.

Example 2.2 (Product of copulas). We can repeat the above for the case where each CDN
function consists of a copula function (Nelsen, 1999). Copula functions provide a flexible
means to construct CDN functions 𝜙𝑠 whose product yields a joint CDF under Lemma
2.1. Copula functions allow one to construct a multivariate CDF 𝜙𝑠 from marginal CDFs
{𝐹 (𝑥𝛼)}𝛼∈𝒩 (𝑠) so that

𝜙𝑠(x𝑠) = 𝜁𝑠

(
{𝐹 (𝑥𝛼)}𝛼∈𝒩 (𝑠)

)
,
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where 𝜁𝑠 is a copula defined over variables 𝑋𝛼, 𝛼 ∈ 𝒩 (𝑠). For the CDN shown in Figure 2,
we can set the CDN functions 𝐺1, 𝐺2 to Gumbel copulas so that

𝐺1(𝑥, 𝑦) = 𝜁1(𝐻1,𝑥(𝑥),𝐻1,𝑦(𝑦)) = exp

(
−
(
− 1

𝜃1

(
log𝐻1,𝑥(𝑥) + log𝐻1,𝑦(𝑦)

))𝜃1)
,

𝐺2(𝑥, 𝑦) = 𝜁2(𝐻2,𝑥(𝑥),𝐻2,𝑦(𝑦)) = exp

(
−
(
− 1

𝜃2

(
log𝐻2,𝑥(𝑥) + log𝐻2,𝑦(𝑦)

))𝜃2)
,

with 𝐻1,𝑥,𝐻2,𝑥 set to univariate Gaussian CDFs with parameters 𝜇1,𝑥, 𝜇2,𝑥, 𝜎1,𝑥, 𝜎2,𝑥 and
𝐻1,𝑦, 𝐻2,𝑦 set to univariate Student’s-t CDFs with parameters 𝜎1,𝑦, 𝜎2,𝑦. One can then verify
that the functions 𝐺1, 𝐺2 satisfy the properties of a copula function (Nelsen, 1999) and so
the product of 𝐺1, 𝐺2 yields the CDF 𝐹 (𝑥, 𝑦). An example of the resulting joint probability
density 𝑃 (𝑥, 𝑦) obtained by differentiation of 𝐹 (𝑥, 𝑦) for parameters 𝜇1,𝑥 = 𝜇2,𝑥 = 0, 𝜎1,𝑥 =
𝜎2,𝑥 = 𝜎1,𝑦 = 𝜎2,𝑦 = 10, 𝜃1 = 𝜃2 = 1 is shown in Figure 4(a), with the PDFs corresponding

to ∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)

]
and ∂𝑥,𝑦

[
𝐺2(𝑥, 𝑦)

]
shown in Figures 4(b) and 4(c). □
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Figure 5: a) Joint probability density function 𝑃 (𝑥, 𝑦) corresponding to the distribution function
𝐹 (𝑥, 𝑦) using bivariate sigmoidal functions as CDN functions; b),c) The PDFs corresponding to

∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)

]
and ∂𝑥,𝑦

[
𝐺2(𝑥, 𝑦)

]
.

Example 2.3 (Product of bivariate sigmoids). As another example of a probability density
function constructed using a CDN, consider the case in which functions𝐺1(𝑥, 𝑦) and𝐺1(𝑥, 𝑦)
in the CDN of Figure 2 are set to be multivariate sigmoids of the form

𝐺1(𝑥, 𝑦) =
1

1 + exp(−𝑤1
𝑥𝑥) + exp(−𝑤1

𝑦𝑦)

𝐺2(𝑥, 𝑦) =
1

1 + exp(−𝑤2
𝑥𝑥) + exp(−𝑤2

𝑦𝑦)
,

with 𝑤1
𝑥, 𝑤

1
𝑦, 𝑤

2
𝑥, 𝑤

2
𝑦 non-negative. An example of the resulting joint probability density

𝑃 (𝑥, 𝑦) obtained by differentiation of 𝐹 (𝑥, 𝑦) = 𝐺1(𝑥, 𝑦)𝐺2(𝑥, 𝑦) for parameters 𝑤1
𝑥 =

12.5, 𝑤1
𝑦 = 0.125, 𝑤2

𝑥 = 0.4, 𝑤2
𝑦 = 0.5 is shown in Figure 5(a), with the PDFs corresponding

to ∂𝑥,𝑦

[
𝐺1(𝑥, 𝑦)

]
and ∂𝑥,𝑦

[
𝐺2(𝑥, 𝑦)

]
shown in Figures 5(b) and 5(c). □

The above examples demonstrate that one can construct multivariate CDFs by taking
a product of CDFs defined over subsets of variables in the graph.
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2.1 Marginal and conditional independence properties

In this section, we will derive the marginal and conditional independence properties for a
CDN. We will see that the conditional independence properties for a CDN are distinct from
those of Bayesian networks, Markov random fields or factor graphs. To begin, we consider
a toy example of the marginal independence property for a three-variable CDN in Figure 6,
where variables 𝑋 and 𝑌 are separated by variable 𝑍 with respect to graph 𝒢, and so are
marginally independent. In a CDN, variables that share no neighbors in the CDN graph
are marginally independent: we formalize this with the following theorem.

Figure 6: Marginal independence property of CDNs: if two variables 𝑋 and 𝑌 share no common
function nodes, they are marginally independent.

Theorem 2.3 (Marginal Independence). Let 𝒢 = (𝑉, 𝑆,𝐸) be a CDN and let 𝐴,𝐵 ⊆ 𝑉 be
disjoint sets of variables. Then 𝐴 ⊥⊥ 𝐵 if 𝒩 (𝐴)

∩𝒩 (𝐵) = ∅. □

Proof. Since 𝒩 (𝐴)
∩𝒩 (𝐵) = ∅, we have

𝐹 (x) =
∏

𝑠∈𝒩 (𝐴)

𝜙𝑠(x𝑠)
∏

𝑠∈𝒩 (𝐵)

𝜙𝑠(x𝑠)
∏

𝑠/∈𝒩 (𝐴)∪𝒩 (𝐵)

𝜙𝑠(x𝑠).

Marginalizing over all other variables X𝑉 ∖{𝐴,𝐵}, we obtain

𝐹 (x𝐴,x𝐵) = lim
x𝑉 ∖{𝐴,𝐵}→∞𝐹 (x) = lim

x𝑉 ∖{𝐴,𝐵}→∞
∏
𝑠∈𝑆

𝜙𝑠(x𝑠)

= lim
x𝑉 ∖{𝐴,𝐵}→∞

∏
𝑠∈𝒩 (𝐴)

𝜙𝑠(x𝑠)
∏

𝑠∈𝒩 (𝐵)

𝜙𝑠(x𝑠)
∏

𝑠/∈𝒩 (𝐴)∪𝒩 (𝐵)

𝜙𝑠(x𝑠)

=
∏

𝑠∈𝒩 (𝐴)

lim
x𝒩 (𝑠)∖𝐴→∞𝜙𝑠(x𝑠)

∏
𝑠∈𝒩 (𝐵)

lim
x𝒩 (𝑠)∖𝐵→∞𝜙𝑠(x𝑠)

∏
𝑠∈𝑆∖{𝒩 (𝐴)∪𝒩 (𝐵)}

lim
x𝒩 (𝑠)→∞𝜙𝑠(x𝑠),

where in the last line we have the used the fact that the limit of a product is equal to the
product of limits. Let

𝑔(x𝐴) =
∏

𝑠∈𝒩 (𝐴)

lim
x𝒩 (𝑠)∖𝐴→∞𝜙𝑠(x𝑠)

ℎ(x𝐵) =
∏

𝑠∈𝒩 (𝐵)

lim
x𝒩 (𝑠)∖𝐵→∞𝜙𝑠(x𝑠).

13
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Since 𝑔, ℎ are products of CDFs, they satisfy the properties of a CDF and so by Lemma 2.1,

we have
∏

𝑠∈𝑆∖{𝒩 (𝐴)
∪𝒩 (𝐵)}

lim
x𝒩 (𝑠)→∞𝜙𝑠(x𝑠) = 1 and lim

x𝐴→∞ 𝑔(x𝐴) = lim
x𝐵→∞ℎ(x𝐵) = 1. Fur-

thermore, it follows that 𝐹 (x𝐴) = lim
x𝐵→∞𝐹 (x𝐴,x𝐵) = 𝑔(x𝐴) and 𝐹 (x𝐵) = lim

x𝐴→∞𝐹 (x𝐴,x𝐵) =

ℎ(x𝐵) by marginalizing away the appropriate sets of variables. Thus, we have 𝐹 (x𝐴,x𝐵) =
𝐹 (x𝐴)𝐹 (x𝐵) and so 𝐴 ⊥⊥ 𝐵.

Note that the converse to the above does not generally hold: if disjoint sets 𝐴 and
𝐵 do share functions in 𝑆, they can still be marginally independent, as one can easily
construct a bipartite graph in which variable nodes are not separated in the graph but the
function nodes connecting 𝐴 to 𝐵 correspond to factorized functions so that 𝐴 ⊥⊥ 𝐵. Having
derived the marginal independence property in a CDN, we now consider the conditional
independence property of a CDN. To motivate this, we first present a toy example in Figure
7 in which we are given CDNs for variables 𝑋,𝑌, 𝑍,𝑊 and we condition on variable 𝑍. Here
the separation of 𝑋 and 𝑌 by unobserved variable 𝑊 implies 𝑋 ⊥⊥ 𝑌 ∣𝑍, but separation
of 𝑋 and 𝑌 by observed variable 𝑍 only implies the marginal independence relationship
𝑋 ⊥⊥ 𝑌 . In general, variable sets that are separated in a CDN by unobserved variables
will be conditionally independent given all other variables: thus, as long as two variables
are separated by some unobserved variables then they are independent, irrespective of the
fact that there may be other variables observed as well. We formalize this conditional
independence property with the following theorem.

Figure 7: Conditional independence in CDNs. Two variables 𝑋 and 𝑌 are marginally independent
given that the variable 𝑍 separates 𝑋 from 𝑌 with respect to the graph (top). When an unobserved
variable 𝑊 separates 𝑋 from 𝑌 , 𝑋,𝑌 are conditionally independent given 𝑍 (bottom). The bottom
graph thus implies 𝑋 ⊥⊥ 𝑌 ,𝑋 ⊥⊥ 𝑍, 𝑊 ⊥⊥ 𝑌 , 𝑋 ⊥⊥ 𝑌 ∣𝑊 and 𝑋 ⊥⊥ 𝑌 ∣𝑍.

Theorem 2.4 (Conditional independence in CDNs). Let 𝒢 = (𝑉, 𝑆,𝐸) be a CDN. For all
disjoint sets of 𝐴,𝐵,𝐶 ⊆ 𝑉 , if 𝐶 separates 𝐴 from 𝐵 relative to graph 𝒢 then

𝐴 ⊥⊥ 𝐵∣𝑉 ∖ (𝐴 ∪𝐵 ∪ 𝐶).

□.

Proof. If 𝐶 separates 𝐴 from 𝐵, then marginalizing out variables in 𝐶 yields two dis-
joint subgraphs with variable sets 𝐴′, 𝐵′, with 𝐴 ⊆ 𝐴′,𝐵 ⊆ 𝐵′, 𝐴′ ∪ 𝐵′ = 𝑉 ∖ 𝐶 and
𝒩 (𝐴′)

∩𝒩 (𝐵′) = ∅. From Theorem 2.3, we therefore have 𝐴′ ⊥⊥ 𝐵′. Now consider the set

14
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𝑉 ∖ {𝐴,𝐵,𝐶} and let 𝐴, �̃� denote a partition of the set so that

𝐴 ∪ �̃� = 𝑉 ∖ {𝐴,𝐵,𝐶}, 𝐴
∩
�̃� = ∅

𝐴
∩
𝐵′ = ∅, �̃�

∩
𝐴′ = ∅.

From the semi-graphoid axioms (Lauritzen, 1996; Pearl, 1988), 𝐴′ ⊥⊥ 𝐵′ implies 𝐴 ⊥⊥ 𝐵∣𝑉 ∖
{𝐴,𝐵,𝐶} since 𝐴 ⊂ 𝐴′ and �̃� ⊂ 𝐵′.

An illustration of the proof is provided in Figures 8(a),8(b). As a corollary of the
conditional independence property, variables that share no common function nodes in the
CDN are also marginally independent, as we now show.

Corollary 2.5. Let 𝐴,𝐵,𝐶 ⊆ 𝑉 be three disjoint node sets so that 𝐶 separates 𝐴 from 𝐵
with respect to 𝒢. Then 𝐴 ⊥⊥ 𝐵. □

The corollary is readily proven by noting that 𝑉 ∖ (𝐴∪𝐵) separates sets 𝐴 and 𝐵 with
respect to 𝒢.
Theorem 2.6 (Conditional inequality independence in CDNs). Let 𝒢 = (𝑉, 𝑆,𝐸) be a
CDN and let 𝐴,𝐵 ⊆ 𝑉 be disjoint sets of variable nodes. If 𝐴 and 𝐵 are separated with
respect to 𝒢, then for any 𝑊 ⊆ 𝑉 ∖ (𝐴,𝐵) 𝐴 ⊥⊥ 𝐵∣𝜔(x𝑊

)
where 𝜔

(
x𝑊

) ≡ {X𝑊 ≤ x𝑊 }.
Proof. If 𝐴 and 𝐵 are separated with respect to 𝒢, then we can write

𝐹 (x𝐴,x𝐵,x𝑉 ∖(𝐴,𝐵)) = 𝑔(x𝐴,x𝑉 ∖(𝐴,𝐵))ℎ(x𝐵,x𝑉 ∖(𝐴,𝐵)) (14)

for some functions 𝑔, ℎ that satisfy the conditions of Lemma 3.1.1. This then means that
𝐹 (x𝐴,x𝐵∣𝜔(x𝑊 )) is given by

𝐹 (x𝐴,x𝐵∣𝜔(x𝑊 )) =

lim
x𝑉 ∖(𝐴,𝐵,𝑊 )→∞𝐹 (x𝐴,x𝐵,x𝑉 ∖(𝐴,𝐵))

lim
x𝑉 ∖𝑊→∞𝐹 (x𝐴,x𝐵,x𝑉 ∖(𝐴,𝐵))

∝ 𝐹 (x𝐴,x𝐵,x𝑊 ) = 𝑔(x𝐴,x𝑊 )ℎ(x𝐵,x𝑊 ), (15)

which implies 𝐴 ⊥⊥ 𝐵∣𝜔(x𝑊 ).

The above conditional inequality independence property, in which we condition on in-
equality events of the type 𝜔

(
x𝑊

)
, is distinct from the conditional independence property

described in Theorem 2.4. We show that if a CDF 𝐹 (x) satisfies the conditional indepen-
dence property of Proposition 2.6 for a given CDN, then 𝐹 can be written as a product
over functions defined over connected sets.

Theorem 2.7 (Factorization property of a CDN). Let 𝒢 = (𝑉, 𝑆,𝐸) be a bipartite graph
and let the CDF 𝐹 (x) satisfy the conditional independence property implied by the CDN
described by 𝒢, so that graph separation of 𝐴 and 𝐵 by 𝑉 ∖ (𝐴,𝐵) with respect to 𝒢 implies
𝐴 ⊥⊥ 𝐵∣𝜔(x𝑊

)
for any 𝑊 ⊆ 𝑉 ∖ (𝐴,𝐵) and for any x𝑊 ∈ ℝ∣𝑊 ∣. Then there exist functions

𝜙𝑠(x𝑠), 𝑠 ∈ 𝑆 that satisfy the properties of a CDF such that the joint CDF 𝐹 (x) factors as∏
𝑠∈𝑆

𝜙𝑠(x𝑠).
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(a)

(b)

Figure 8: Example of conditional independence due to graph separation in a CDN. a) Given
bipartite graph 𝒢 = (𝑉, 𝑆,𝐸), node set 𝐶 separates set 𝐴 from 𝐵 (nodes in red) with respect to 𝒢.
Furthermore, we have for 𝐴′, 𝐵′ (nodes in green dotted line) 𝐴 ⊆ 𝐴′, 𝐵 ⊆ 𝐵′, 𝐴′ ∪𝐵′ = 𝑉 ∖ 𝐶 and
𝒩 (𝐴′)

∩𝒩 (𝐵′) = ∅ as shown. b) Marginalizing out variables corresponding to nodes in 𝐶 yields
two disjoint subgraphs of 𝒢 and so 𝐴 ⊥⊥ 𝐵∣𝑉 ∖ {𝐴,𝐵,𝐶}.

Proof. The proof here parallels that for the Hammersley-Clifford theorem for undirected
graphical models Lauritzen (1996). We begin our proof by defining 𝜓𝑈 (x), 𝜁𝑈 (x) as functions
that depend only on variable nodes in some set 𝑈 ⊆ 𝑉 and that form a Möbius transform
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pair

𝜓𝑈 (x) =
∑
𝑊⊆𝑈

𝜁𝑊 (x) (16)

𝜁𝑈 (x) =
∑
𝑊⊆𝑈

(−1)∣𝑈∖𝑊 ∣𝜓𝑊 (x), (17)

where we take 𝜓𝑈 (x) ≡ log𝐹 (x𝑈 ). Now, we note that 𝐹 (x) can always be written as a

product of functions
∏
𝑈⊆𝑉

𝜙𝑈 (x) where each function 𝜙𝑈 satisfies the properties of a CDF:

a trivial example of this is to set 𝜙𝑉 (x) = 𝐹 (x) and 𝜙𝑈 (x) = 1 for all 𝑈 ⊂ 𝑉 . Since by
hypothesis 𝐹 satisfies all of the conditional independence properties implied by the CDN
described by 𝒢, if we take 𝜙𝑈 (x) = exp

(
𝜁𝑈 (x)

)
, then it suffices to show that 𝜁𝑈 (x) ≡ 0 for

subsets of variable nodes 𝑈 for which any two non-neighboring variable nodes 𝛼, 𝛽 ∈ 𝑈 are
separated such that 𝛼 ⊥⊥ 𝛽∣𝜔(x𝑊 ) for any 𝑊 ⊆ 𝑈 ∖ (𝛼, 𝛽). Observe that we can write 𝜁𝑈 (x)
as

𝜁𝑈 (x) =
∑
𝑊⊆𝑈

(−1)∣𝑈∖𝑊 ∣𝜓𝑊 (x)

=
∑

𝑊⊆𝑈∖(𝛼∪𝛽)
(−1)∣𝑈∖𝑊 ∣

(
𝜓𝑊 (x)− 𝜓𝑊∪𝛼(x)− 𝜓𝑊∪𝛽(x) + 𝜓𝑊∪𝛼∪𝛽(x)

)
. (18)

If 𝛼, 𝛽 ∈ 𝑈 are separated and 𝑊 ⊆ 𝑈 ∖ {𝛼, 𝛽}, then 𝛼 ⊥⊥ 𝛽∣𝜔(x𝑊 ) and

𝜓𝑊∪𝛼∪𝛽(x)− 𝜓𝑊∪𝛼(x) = log
𝐹 (𝑥𝛼, 𝑥𝛽 ,x𝑊 )

𝐹 (𝑥𝛼,x𝑊 )
= log

𝐹 (𝑥𝛼∣𝜔(x𝑊 ))𝐹 (𝑥𝛽 ∣𝜔(x𝑊 ))𝐹 (x𝑊 )

𝐹 (𝑥𝛼∣𝜔(x𝑊 ))𝐹 (x𝑊 )

= log
𝐹 (𝑥𝛽 ∣𝜔(x𝑊 ))𝐹 (x𝑊 )

𝐹 (x𝑊 )

= log𝐹 (𝑥𝛽,x𝑊 )− log𝐹 (x𝑊 )

= 𝜓𝑊∪𝛽(x)− 𝜓𝑊 (x). (19)

Thus if 𝑈 is any set where nodes 𝛼, 𝛽 ∈ 𝑈 are separated, then for all 𝑊 ⊆ 𝑈 ∖ (𝛼 ∪ 𝛽)
we must have 𝜓𝑊 (x) − 𝜓𝑊∪𝛼(x) − 𝜓𝑊∪𝛽(x) + 𝜓𝑊∪𝛼∪𝛽(x) ≡ 0 and so 𝜁𝑈 (x) = 0. Since

𝐹 (x) = exp(𝜓𝑉 (x)) = exp
(∑

𝑈

𝜁𝑈 (x)
)
=
∏
𝑈

𝜙𝑈 (x) where the product is taken over subsets

of variable nodes 𝑈 that are not separated, and noting that for each 𝑠, variable nodes in
𝒩 (𝑠) are not separated, we can then substitute 𝜙𝑈 (x) = 𝜙𝑠(x𝑠) into the product with

𝑈 = 𝒩 (𝑠). Thus we can write 𝐹 (x) =
∏
𝑠∈𝑆

𝜙𝑠(x𝑠), where each function 𝜙𝑠 is defined over

the set of variable nodes 𝒩 (𝑠).

Thus, if 𝐹 (x) satisfies the conditional independence property where graph separation
of 𝐴 and 𝐵 with respect to 𝒢 implies 𝐴 ⊥⊥ 𝐵∣𝜔(x𝑊 ) for any 𝑊 ⊆ 𝑉 ∖ (𝐴,𝐵), then 𝐹

can be written as a product of functions of the form
∏
𝑠∈𝑆

𝜙𝑠(x𝑠). The above theorem then

demonstrates equivalence between the conditional independence property 𝐴 ⊥⊥ 𝐵∣𝜔(x𝑊 )
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and the factored form for 𝐹 (x). This means that 𝐴 ⊥⊥ 𝐵∣𝜔(x𝑊 ) in turn implies both
𝐴 ⊥⊥ 𝐵 and 𝐴 ⊥⊥ 𝐵∣𝑉 ∖ (𝐴,𝐵,𝐶) for disjoint sets 𝐴,𝐵,𝐶 ⊆ 𝑉 where 𝐶 separates 𝐴 from 𝐵
with respect to 𝒢. As the latter two properties are those of bi-directed graphical models,
the independence properties of CDNs then include those of bi-directed graphical models
Drton and Richardson (2008).

In addition to the above, both the conditional independence properties of Theorem 2.4
and Proposition 2.6 are closed under marginalization, which consists of computing limits
of CDN functions. Thus if 𝒢 is a CDN model for 𝐹 (x), then the graph for CDN for CDF
𝐹 (x𝐴) = lim

x𝑉 ∖𝐴→∞𝐹 (x𝐴,x𝑉 ∖𝐴) is given by a subgraph of 𝒢 which then implies only a subset

of the independence properties of 𝒢. The next proposition formalizes this.

Proposition 2.8. Let 𝒢 = (𝑉, 𝑆,𝐸) be a CDN and let 𝐴,𝐵,𝐶 ⊂ 𝑉 be disjoint sets of
nodes with 𝐶 ⊆ 𝑉 ∖ {𝐴,𝐵} separating 𝐴 from 𝐵 with respect to 𝒢. Let 𝒢′ = (𝑉 ′, 𝑆′, 𝐸′) be
a subgraph of 𝒢 with 𝑉 ′ ⊆ 𝑉, 𝑆′ ⊆ 𝑆,𝐸′ ⊆ 𝐸. Similarly, let 𝐴′ = 𝐴 ∩ 𝑉 ′, 𝐵′ = 𝐵 ∩ 𝑉 ′, 𝐶 ′ =
𝐶 ∩ 𝑉 ′ be disjoint sets of nodes. Then 𝐶 ′ separates 𝐴′ from 𝐵′ with respect to 𝒢′. □

As a result, the conditional independence relation 𝐴′ ⊥⊥ 𝐵′∣𝑉 ′ ∖ (𝐴′ ∪ 𝐵′ ∪ 𝐶 ′) must
also hold in the subgraph 𝒢′, such that 𝒢′ implies a subset of the independence constraints
implied by 𝒢. The above closure property under marginalization is a property that also
holds for Markov random fields, but not for Bayesian networks (see Richardson and Spirtes
(2002) for an example). The above closure and conditional independence properties for
CDNs have also been previously shown to hold for bidirected graphs as well, which we will
now describe.

2.2 The relationship between cumulative distribution networks and bidirected
graphs

Graphical models with some of the independence properties of CDNs have in fact been
studied previously in the statistics literature. The connected set property for CDNs pre-
sented in Theorem 2.7 is in fact identical to the connected set property of (Richardson and
Spirtes, 2002), which was also derived in the context of bidirected graphical models (Drton
and Richardson, 2008; Richardson and Spirtes, 2002; Richardson, 2003), which are graphi-
cal models where the lack of an edge between two nodes implies a marginal independence
constraint. We provide a formal definition for a bi-directed graphical model below.

Definition 2.2. Let 𝐺 = (𝑉,𝐸) be a graph consisting of nodes 𝛼 ∈ 𝑉 and bi-directed edges
𝑒 ∈ 𝐸 consisting of unordered pairs of nodes 𝛼, 𝛽, denoted by (𝛼, 𝛽). For arbitrary joint
probability 𝑃 defined on random variables 𝑋𝛼, 𝐺 is a bi-directed graphical model for 𝑃 if
(𝛼, 𝛽) /∈ 𝐸 ⇔ 𝛼 ⊥⊥ 𝛽.

Alternately, we denote edges in a bi-directed graph as (𝛼, 𝛽) ≡ 𝛼 ↔ 𝛽. Note that
𝛼↔ 𝛽 is not equivalent to having both directed edges 𝛼→ 𝛽 and 𝛼← 𝛽. It can be shown
(Richardson and Spirtes, 2002) that any bi-directed graphical model corresponds to a di-
rected graphical model with latent variables marginalized out. In particular, we define the
canonical directed acyclic graph (DAG) for the bi-directed graph 𝐺 as a directed graph �̃�
with additional latent variables such that if 𝛼↔ 𝛽 in 𝐺, then 𝛼← 𝑢𝛼,𝛽 → 𝛽 in �̃� for some
latent variable 𝑢𝛼,𝛽 . Thus bi-directed graphical models can be viewed as models obtained
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from a corresponding canonical DAG with latent variables marginalized out, such that in-
dependence constraints between neighboring variable nodes in 𝐺 can be viewed as arising
from the absence of any shared latent variables in the canonical DAG �̃�. This suggests
the usefulness of bi-directed graphical models for problems where we cannot discount the
presence of unobserved variables but we either A) do not have sufficient domain knowledge
to specify distributions containing latent variables, and/or B) we wish to avoid marginal-
izing over these latent variables. In such cases, one can instead attempt to parameterize a
probability define on observed variables using a bi-directed graphical model in which inde-
pendence constraints among variables are implied by both the corresponding canonical DAG
and bi-directed graphs. Examples of a canonical DAG and corresponding bi-directed graph
that imply the same set of independence constraints among observed variables are shown in
Figures 9(a),9(b). Several parameterizations had been previously proposed for bidirected
graphical models. Covariance graphs (Kauermann, 1996) were proposed in which variables
are jointly Gaussian with zero pairwise covariance if there is no edge connecting the two
variables in the bidirected graph. In addition, (Silva and Ghahramani, 2009a) proposed a
mixture model with latent variables in which dependent variables in the bidirected graph
can be explained by the causal influence of common components in the mixture model. For
bidirected graphical models defined over binary variables, a parameterization was proposed
based on joint probabilities over connected components of the bidirected graph so that the
joint probability of any subset of variables could be obtained by Möbius inversion (Drton
and Richardson, 2008).

Suppose now that we are given a bi-directed graph 𝐺 and a CDN 𝒢 defined over the
same variables nodes 𝑉 . Let 𝐺 and 𝒢 have the same connectivity, such that for any pair
of variable nodes 𝛼, 𝛽 ∈ 𝑉 , a path between 𝛼, 𝛽 exists both in 𝐺 and 𝒢. Then both 𝐺
and 𝒢 imply the same set of marginal independence constraints, as we have shown above
that in a CDN, two nodes that do not share any function nodes in common are marginally
independent (Theorem 2.3). An example of a bidirected graph and CDN that imply the
same set of marginal independence constraints is shown in Figures 9(b), 9(c). In addition
to implying the same marginal independence constraints as a bi-directed graphical model,
the conditional independence property given in Theorem 2.4 for CDNs corresponds to the
dual global Markov property of (Kauermann, 1996) for bidirected graphical models, which
we now present.

Theorem 2.9. Let 𝐺 = (𝑉,𝐸) be a bi-directed graphical model and let 𝐴,𝐵,𝐶 ⊆ 𝑉 be
three disjoint node sets so that 𝑉 ∖ (𝐴∪𝐵 ∪𝐶) separates 𝐴 from 𝐵 with respect to 𝐺. Then
𝐴 ⊥⊥ 𝐵∣𝐶. □

While the conditional and marginal independence constraints implied by both a bi-
directed graph and a CDN of the same connectivity are identical, Proposition 2.6 shows
that an additional set of conditional independence constraints of the form 𝐴 ⊥⊥ 𝐵∣𝜔(x𝑊 )
holds for CDNs but not for bi-directed graphs. As a result, CDNs model a subset of
the distributions that satisfy the independence constraints of a corresponding bi-directed
graph with the same connectivity. In general, CDNs do not model the full set of the
probability distributions that can be modelled by bi-directed graphical models with the
same connectivity. However, for probabilities that can be modelled by any of CDN, bi-
directed graph or corresponding canonical DAG models, working with such models using
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(a) (b) (c)

Figure 9: Graphical models over four variables𝑋1, 𝑋2, 𝑋3, 𝑋4 in which graph separation of variable
nodes imply the marginal independence relations𝑋1 ⊥⊥ 𝑋3, 𝑋2 ⊥⊥ 𝑋4. a) A canonical directed acyclic
graphical model with additional latent variables, shown as shaded nodes; b)A bidirected graph; b)
A corresponding CDN.

bi-directed graphs or canonical DAGs will often be difficult, as in the case of the former
there currently exist only parameterizations for Gaussian and multinomial models and in
the latter case, we must deal with intractable marginalization operations. In such cases
CDNs will offer a class of models that will be relatively easier to parameterize and for
which inference and learning will be easier compared to having to perform marginalization
of latent variables.

In the case of CDNs defined over discrete variables, there is an additional conditional
independence property that is also not implied in bidirected graphical models. For a CDN
defined over discrete variables taking values in an ordered set 𝒳 = {𝑟1, ⋅ ⋅ ⋅ , 𝑟𝐾}, con-
ditioning on the event X𝐶 = 𝑟11 yields conditional independence between disjoint sets
𝐴,𝐵,𝐶 ⊆ 𝑉 in which 𝐶 separates 𝐴,𝐵 with respect to 𝒢. We define the corresponding
min-independence property below.

Definition 2.3 (Min-independence). Let X𝐴,X𝐵,X𝐶 be sets of ordinal discrete variables
that take on values in the totally ordered alphabet 𝒳 with minimum element 𝑟1 ∈ 𝒳 defined
as 𝑟1 ≺ 𝛼 ∀𝛼 ∕= 𝑟1, 𝛼 ∈ 𝒳 . X𝐴 and X𝐵 are said to be min-independent given X𝐶 if

X𝐴 ⊥⊥ X𝐵∣X𝐶 = 𝑟11,

where 𝑟11 = [𝑟1 ⋅ 𝑟1]𝑇 . □

Theorem 2.10 (Min-independence property of CDNs). Let 𝒢 = (𝑉, 𝑆,𝐸) be a CDN defined
over ordinal discrete variables that take on values in the totally ordered alphabet 𝒳 with
minimum element 𝑟1 ∈ 𝒳 defined as 𝑟1 ≺ 𝛼 ∀𝛼 ∕= 𝑟1, 𝛼 ∈ 𝒳 . Let 𝐴,𝐵,𝐶 ⊆ 𝑉 be arbitrary
disjoint subsets of V, with 𝐶 separating 𝐴,𝐵 with respect to 𝒢. Then X𝐴 and X𝐵 are
min-independent given X𝐶 . □

Proof. Since 𝐶 separates 𝐴 from 𝐵 with respect to 𝒢, we can write

𝐹 (x𝐴,x𝐵,x𝐶) = 𝜙(x𝐴,x𝐶)𝜓(x𝐵,x𝐶).
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The conditional CDF 𝐹 (x𝐴,x𝐵∣x𝐶 = 𝑟11) is then given by

𝐹 (x𝐴,x𝐵∣x𝐶 = 𝑟11) =
ℙ
[
{X𝐴 ≤ x𝐴}

∩{X𝐵 ≤ x𝐵}
∩{X𝐶 = 𝑟11}

]
ℙ
[
X𝐶 = 𝑟11

]
=

ℙ
[
{X𝐴 ≤ x𝐴}

∩{X𝐵 ≤ x𝐵}
∩{X𝐶 ≤ 𝑟11}

]
ℙ
[
X𝐶 ≤ 𝑟11

]
∝ 𝜙(x𝐴, 𝑟11)𝜓(x𝐵, 𝑟11).

and so X𝐴 ⊥⊥ X𝐵∣X𝐶 = 𝑟11.

Thus, in the case of a CDN defined over discrete variables where each variable can have
values in the totally ordered alphabet 𝒳 , a finite difference with respect to variables X𝐶 ,
when evaluated at the vector of minimum elements X𝐶 = 𝑟11 is equivalent to directly
evaluating the CDF at X𝐶 = 𝑟11. Thus CDNs defined over discrete variables admit an
additional set of rules for assessing conditional independence between sets of variables than
those for bidirected graphs defined over discrete variables. This means that in the case of
models defined over ordinal discrete variables, the particular set of conditional independence
relationships amongst variables in the model is determined as a function of the ordering
over possible labels for each variable in the model, so that one must exercise care in how
such variables are labelled and what ordering is satisfied by such labels.

2.3 Stochastic orderings in a cumulative distribution network

The CDN, in providing a graphical model for the joint CDF over many random variables,
also allows one to easily specify stochastic ordering constraints between subsets of variables
in the model. Informally, a stochastic ordering relationship 𝑋 ⪯ 𝑌 holds between two
random variables 𝑋,𝑌 if samples of 𝑌 tend to be larger than samples of 𝑋. We will focus
here on first-order stochastic ordering constraints (Lehmann, 1955; Shaked and Shanthiku-
mar, 1994) of the form 𝑋 ⪯ 𝑌 and how one can specify such constraints in terms of the
CDN functions in the model. We note that such constraints are not a necessary part of
the definition for a CDN or for a multivariate CDF, so that the graph for the CDN alone
does not allow one to inspect stochastic ordering constraints based on graph separation
of variables. However, the introduction of stochastic ordering constraints, in combination
with separation of variables with respect to the graph, do impose constraints on the prod-
ucts of CDN functions, as we will now show. We will define below the concept of first-order
stochastic orderings among random variables, as this is the primary definition for a stochas-
tic ordering that we will make use of. We refer the reader to (Lehmann, 1955; Shaked and
Shanthikumar, 1994) for additional definitions of stochastic orderings.

Definition 2.4. Consider two scalar random variables 𝑋 and 𝑌 with marginal CDFs 𝐹𝑋(𝑥)
and 𝐹𝑌 (𝑦). Then 𝑋 and 𝑌 are said to satisfy the first-order stochastic ordering constraint
𝑋 ⪯ 𝑌 if 𝐹𝑋(𝑡) ≥ 𝐹𝑌 (𝑡) for all 𝑡 ∈ ℝ. □

The above definition of stochastic ordering is stronger than the constraint 𝔼[𝑋] ≤ 𝔼[𝑌 ]
which is often used and one can show that 𝑋 ⪯ 𝑌 implies the former constraint. Note
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that the converse is not true: 𝔼[𝑋] ≤ 𝔼[𝑌 ] does not necessarily imply 𝑋 ⪯ 𝑌 . For
example, consider two Gaussian random variables 𝑋 and 𝑌 for which 𝔼[𝑋] ≤ 𝔼[𝑌 ] but
𝑉 𝑎𝑟[𝑋]≫ 𝑉 𝑎𝑟[𝑌 ]. The definition of a stochastic ordering can also be extended to disjoint
sets of variables X𝐴 and X𝐵.

Definition 2.5. Let X𝐴 and X𝐵 be disjoint sets of variables so that X𝐴 = {𝑋𝛼1 , ⋅ ⋅ ⋅ , 𝑋𝛼𝐾}
and X𝐵 = {𝑋𝛽1 , ⋅ ⋅ ⋅ , 𝑋𝛽𝐾

} for some strictly positive integer 𝐾. Let 𝐹X𝐴
(t) and 𝐹X𝐵

(t)
be the CDFs of X𝐴 and X𝐵. Then X𝐴,X𝐵 are said to satisfy the stochastic ordering
relationship X𝐴 ⪯ X𝐵 if

𝐹X𝐴
(t) ≥ 𝐹X𝐵

(t)

for all t ∈ ℝ𝐾 . □

Having defined stochastic orderings, we will now present the corresponding constraints
on CDN functions which are implied by the above definitions.

Proposition 2.11. Let 𝒢 = (𝑉, 𝑆,𝐸) be a CDN, with 𝐴,𝐵 ⊂ 𝑉 so that 𝐴 = {𝛼1, ⋅ ⋅ ⋅ , 𝛼𝐾}
and 𝐵 = {𝛽1, ⋅ ⋅ ⋅ , 𝛽𝐾} for some strictly positive integer 𝐾. Let t ∈ ℝ𝐾 . Then 𝐴,𝐵 satisfy
the stochastic ordering relationship X𝐴 ⪯ X𝐵 if and only if∏

𝑠∈𝒩 (𝐴)

lim
u𝒩 (𝑠)∖𝐴→∞𝜙𝑠(u𝒩 (𝑠)∖𝐴, t𝒩 (𝑠)

∩
𝐴) ≥

∏
𝑠∈𝒩 (𝐵)

lim
u𝒩 (𝑠)∖𝐵→∞𝜙𝑠(u𝒩 (𝑠)∖𝐵, t𝒩 (𝑠)

∩
𝐵)

for all t ∈ ℝ𝐾 . □

The above can be readily obtained by marginalizing over variables in 𝑉 ∖ 𝐴, 𝑉 ∖ 𝐵
respectively to obtain expressions for 𝐹 (x𝐴), 𝐹 (x𝐵) as products of CDN functions. The
corresponding ordering then holds from Definition 2.5 if and only if 𝐹X𝐴

(t) ≥ 𝐹X𝐵
(t) for

all t ∈ ℝ𝐾 .

2.4 Discussion

We have presented the CDN and sufficient conditions on the functions in the CDN in
order for the CDN to model to a CDF. We have shown that the conditional independence
relationships that follow from graph separation in CDNs are different from the relationships
implied by graph separation in Bayesian networks, Markov random fields and factor graph
models. We have shown that the conditional independence properties of CDNs include, but
are not limited to, the marginal independence properties of bidirected graphs, such that
CDNs model a subset of all probability distributions that could be modelled by bi-directed
graphs. For ordinal discrete random variables, an additional independence property called
min-independence holds in which two disjoint sets of variables 𝐴 and 𝐵 are conditionally
independent of one another if one observes all variables in set 𝐶 being equal to the minimum
element of the poset.

Although it was shown that CDNs can model a subset of the distributions that could be
modelled by bi-directed graphical models, CDNs will in general be easier to work with as
compared to the corresponding canonical DAG model where one is required to marginalize
over many latent variables. In the next section, we will describe why it is that CDNs
are easier to work with than corresponding graphical models with latent variables. The
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fundamental reason for this is that A) in a CDN, marginalization consists of computing
limits, unlike marginalization in models for probability densities and B) conditioning on
observations in a CDN consists of computing derivatives, which are significantly easier to
compute compared to the integrals/sums required for computing conditionals in models for
probability densities.

3. The derivative-sum-product algorithm

In the previous section, we showed that for a joint CDF, we could compute conditional prob-
abilities of the forms 𝐹 (x𝐴∣𝜔(x𝐵)), 𝐹 (x𝐴∣x𝐵), 𝑃 (x𝐴∣𝜔(x𝐵)) and 𝑃 (x𝐴∣x𝐵), in addition to
probabilities of the type 𝑃 (x𝐴), 𝐹 (x𝐴). In directed, undirected or factor graphs, computing
and evaluating such conditional CDFs/PDFs would generally require us to integrate over
several variables, which may be an intractable operation requiring sampling methods or
approximation schemes. However in a CDN, computing and evaluating such conditionals
is comparatively easier, as we can compute the relevant quantities by differentiating the
joint CDF and then evaluating the total mixed derivative for any given vector of observa-
tions x. In this section we will show that if we model the joint CDF using a CDN with
a tree-structured graph, then we can derive a class of message-passing algorithms called
called derivative-sum-product (DSP) for efficiently computing and evaluating derivatives in
CDNs. Since that the CDF factorizes for a CDN, the global mixed derivative can then be
decomposed into a series of local mixed derivative computations, where each function 𝑠 ∈ 𝑆
and its derivatives can be readily evaluated for observations x𝑠 for any functions 𝜙𝑠 that
satisfy the properties of a CDF. Throughout this section, we will assume that the sufficient
conditions for the CDN functions 𝜙𝑠(x𝑠) hold in order for the CDN to model a valid joint
CDF (Lemma 2.1). We will further assume that the derivatives/finite differences of CDN
functions 𝜙𝑠(x𝑠) with respect to all subsets of argument variables all exist and that the
order of differentiation does not affect the computation of any mixed derivatives. In the
case where we are differentiating with respect to a set of variables X𝐶 which are observed
with values x𝐶 , we assume that the resulting derivative/finite difference is evaluated at the
observed values x𝐶 . In the case where we are given a function 𝐺(𝑥) defined over a single
ordinal discrete variable 𝑥 ∈ 𝒳 where 𝒳 = {𝑟0, 𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑁−1} and 𝑟0 < 𝑟1 ⋅ ⋅ ⋅ < 𝑟𝑁−1, 𝑟𝑖 ∈ ℝ
are 𝑁 real-valued scalars, we define the finite difference of 𝐺 with respect to 𝑥, evaluated
at 𝑥 as

∂𝑥

[
𝐺(𝑥)

]
=

{
𝐺(𝑟0) if 𝑥 = 𝑟0

𝐺(𝑟𝑖)−𝐺(𝑟𝑖−1) if 𝑥 = 𝑟𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 − 1

3.1 Differentiation in cumulative distribution networks

We first consider the problem of computing the marginal CDF 𝐹 (𝑥𝛼) for particular variable
𝑋𝛼. We note that in the CDN, marginalization is a simple procedure that involves taking
limits with respect to the variables in the network, so that if we let

𝐹 (x) = 𝐹 (𝑥𝛼,x𝑉 ∖𝛼) =
∏

𝑠∈𝒩 (𝛼)

𝜙𝑠(𝑥𝛼,x𝒩 (𝑠)∖𝛼)
∏

𝑠/∈𝒩 (𝛼)

𝜙𝑠(x𝑠),
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then the marginal CDF for 𝑋𝛼 is given by

𝐹 (𝑥𝛼) = lim
x𝑉 ∖𝛼→∞𝐹 (𝑥𝛼,x𝑉 ∖𝛼) =

∏
𝑠∈𝒩 (𝛼)

𝜙𝑠(𝑥𝛼,∞)
∏

𝑠/∈𝒩 (𝛼)

𝜙𝑠(∞) =
∏

𝑠∈𝒩 (𝛼)

𝜙𝑠(𝑥𝛼,∞).

Thus for any 𝑥𝛼, we can obtain any distribution of the type 𝐹 (x𝐴) in time 𝑂(∣𝑆∣∣𝑉 ∣) by tak-
ing the product of limits of functions lim

x𝒩 (𝑠)∖𝛼→∞𝜙𝑠(𝑥𝛼,x𝒩 (𝑠)∖𝛼) = 𝜙𝑠(𝑥𝛼,∞). Furthermore,

we can compute any conditional cumulative distribution of the type 𝐹 (x𝐴∣𝜔(x𝐵)) in the
same fashion by marginalizing the joint CDF over variables in 𝑉 ∖ {𝐴,𝐵} and computing

𝐹 (x𝐴∣𝜔(x𝐵)) =
𝐹 (x𝐴,x𝐵)

𝐹 (x𝐵)
=

lim
x𝑉 ∖{𝐴,𝐵}→∞𝐹 (x)

lim
x𝑉 ∖𝐵

𝐹 (x)
.

Note that the above marginalization contrasts with the problem of exact inference in density
models, where potentially intractable marginalization operations must be performed locally
for each variable node in order to obtain the desired marginals.

Although obtaining marginals in the CDN is relatively simple, computing and evaluating
probability distributions of the form 𝐹 (x𝐴∣x𝐵), 𝑃 (x𝐴∣𝜔(x𝐵)), 𝑃 (x𝐴∣x𝐵) and 𝑃 (x𝐴) is more
involved. We have seen previously that in order to compute conditional CDFs, we must
compute corresponding higher-order derivatives with respect to these observed variables.
Fortunately, computing and evaluating derivatives is generally tractable compared to the
marginalization operation in probability densities. In particular, given observed data we
may wish to numerically evaluate probabilities under the model, such that computing deriva-
tives for each function 𝜙𝑠 requires that we store only the numerical value for the derivatives.
Provided that the CDN functions are chosen to be differentiable, computing derivatives of
these functions will consist simply of function evaluations and will be tractable, in con-
trast with the generally intractable problem of evaluating exact probabilities for models of
probability density functions with latent variables.

Since the factorization of the joint CDF modelled by a CDN consists of a product of
functions 𝜙𝑠(x𝑠), the intuition here is that we can distribute the differentiation operation
such that at each function node in the CDN, we compute the derivatives with respect to
local variables and passes the result to its neighbors. The resulting algorithm consists of
passing messages 𝜇𝛼→𝑠(x), 𝜇𝑠→𝛼(x) from variable nodes to function nodes and from function
nodes to variable nodes, analogous to the operation of the sum-product algorithm in factor
graphs. In the Appendix, we present the derivation of the algorithm in the setting where
we wish to compute the mixed derivative of the CDF 𝐹 (x) modelled by a tree-structured
CDN: the derivation is analogous to the derivation for the sum-product algorithm, but
with the summation operator replaced by the differentiation operator. To illustrate the
corresponding message-passing algorithm, consider the following toy example.

Example 3.1. Consider the toy example of a CDN over four random variables 𝑈,𝑋, 𝑌, 𝑍
from Figure 10. The joint CDF is given by 𝐹 (𝑢, 𝑥, 𝑦, 𝑧) = 𝑔(𝑢, 𝑥, 𝑦)ℎ(𝑦, 𝑧). Let 𝑍 be the
root node so that 𝑋 and 𝑈 are leaf nodes. Then the messages from leaves to root are given
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Figure 10: Flow of messages in the toy example of CDN defined over variables 𝑋,𝑌, 𝑍, 𝑈 .

by

𝜇𝑋→𝑔(𝑥) = 1

𝜇𝑈→𝑔(𝑢) = 1

𝜇𝑔→𝑌 (𝑦;𝑢, 𝑥) = ∂𝑢,𝑥

[
𝑔(𝑢, 𝑥, 𝑦)𝜇𝑋→𝑔(𝑥)𝜇𝑈→𝑔(𝑢)

]
𝜇𝑌→ℎ(𝑦;𝑢, 𝑥) = 𝜇𝑔→𝑌 (𝑦;𝑢, 𝑥)

𝜇ℎ→𝑍(𝑧;𝑢, 𝑥, 𝑦) = ∂𝑦

[
ℎ(𝑦, 𝑧)𝜇𝑌→ℎ(𝑦;𝑢, 𝑥)

]
.

Figure 10 shows the flow of the above messages.
Once we have propagated messages from the leaf nodes to the root node, we can evaluate

the joint probability 𝑃 (𝑢, 𝑥, 𝑦, 𝑧) = ∂𝑧

[
𝜇ℎ→𝑍(𝑧;𝑢, 𝑥, 𝑦)

]
at the root node so that

𝑃 (𝑢, 𝑥, 𝑦, 𝑧) = ∂𝑧

[
𝜇ℎ→𝑍(𝑧;𝑢, 𝑥, 𝑦)

]
= ∂𝑧

[
∂𝑦

[
ℎ(𝑦, 𝑧)𝜇𝑌→ℎ(𝑦;𝑢, 𝑥)

]]
= ∂𝑧

[
∂𝑦

[
ℎ(𝑦, 𝑧)𝜇𝑔→𝑌 (𝑦;𝑢, 𝑥)

]]
= ∂𝑧

[
∂𝑦

[
ℎ(𝑦, 𝑧)∂𝑢,𝑥

[
𝑔(𝑢, 𝑥, 𝑦)𝜇𝑋→𝑔(𝑥)𝜇𝑈→𝑔(𝑢)

]]]
= ∂𝑥,𝑦,𝑧,𝑢

[
𝑔(𝑢, 𝑥, 𝑦)ℎ(𝑦, 𝑧)

]
= ∂𝑥,𝑦,𝑧,𝑢

[
𝐹 (𝑢, 𝑥, 𝑦, 𝑧)

]
.

The above example illustrates the fact that if the graph topology is a tree, then the
message-passing algorithm yields the correct mixed derivatives with respect to each variable

in the CDN so that we obtain the joint probability 𝑃 (x) = ∂x

[
𝐹 (x)

]
at the root node of

the tree by multiplying all incoming messages at that node.
The above example also illustrates a potential source for complexity: each message

consists of a symbolic expression that is a sum of products of derivatives of CDN functions.
For larger graphs, it is easy to see that such a message-passing scheme would grow in
complexity as the symbolic expression for each message would grow in size as we pass
from leaf nodes to the root. However, for practical purposes in which we wish to obtain
numerical values for probabilities at the observed data, we are interested in evaluating
derivatives corresponding to marginal/conditional probabilities for observed values of data
x, with unobserved variables marginalized out by taking limits. As the message-passing
algorithm allows us to decompose the total mixed derivative computation into a series
of local computations, each term in this decomposition consists of a derivative that can
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be ”clamped” to the observed values for its arguments. Moreover, this ”clamping” need
only be performed locally for each CDN function as we evaluate each outgoing message.
In the above example, given observed values 𝑢∗, 𝑥∗ the message 𝜇𝑔→𝑌 (𝑦;𝑢, 𝑥) consists of
computing a derivative with respect to 𝑢, 𝑥, followed by evaluation of the derivative at 𝑢∗, 𝑥∗.
Thus by ”clamping” to observed values, messages in the above scheme will not increase
in size, regardless of the functional forms chosen for the CDN functions. By evaluating
each derivative in the example for 𝑢∗, 𝑥∗, 𝑦∗, 𝑧∗, we can obtain a numerical value for the
probability 𝑃 (𝑢∗, 𝑥∗, 𝑦∗, 𝑧∗) by multiplying messages at the root node.

3.2 Inference in cumulative distribution networks

Thus far we have presented a message-passing scheme for computing derivatives of the
joint CDF in order to obtain the joint PDF/PMF 𝑃 (x). Here we will demonstrate the
correspondence between computing higher order derivatives and the problem of inference
in a CDN. The relation between differentiation and inference in CDNs is analogous to the
relation between marginalization and inference in factor graphs. Thus, just as the sum-
product algorithm allows one to compute distributions of the type 𝑃 (x𝐴∣x𝐵), message-
passing in a CDN allows us to compute conditional distributions of the form 𝐹 (x𝐴∣x𝐵) and
𝑃 (x𝐴∣x𝐵) for disjoint sets 𝐴,𝐵 ⊂ 𝑉 .

In order to compute conditional distributions of the above types, we will assume that
when computing a conditional distribution such as 𝐹 (x𝐴∣x𝐵) or 𝑃 (x𝐴∣x𝐵), we have 𝑃 (x𝐵) =

∂x𝐵

[
𝐹 (x𝐵)

]
> 0. Now consider the problem of computing the quantity 𝐹 (x𝐴∣x𝐵). We can

write this as

𝐹 (x𝐴∣x𝐵) =
∂x𝐵

[
𝐹 (x𝐴,x𝐵)

]
∂x𝐵

[
𝐹 (x𝐵)

] =

lim
x𝑉 ∖{𝐴,𝐵}→∞ ∂x𝐵

[
𝐹 (x)

]
lim

x𝑉 ∖𝐵→∞ ∂x𝐵

[
𝐹 (x)

] =

∂x𝐵

[
lim

x𝑉 ∖{𝐴,𝐵}→∞𝐹 (x)

]

∂x𝐵

[
lim

x𝑉 ∖𝐵→∞𝐹 (x)

]

∝ ∂x𝐵

[
lim

x𝑉 ∖{𝐴,𝐵}→∞𝐹 (x)

]
,

so that by combining the operations of taking limits and computing derivatives/finite differ-
ences, we can compute any conditional probability of the form 𝐹 (x𝐴∣x𝐵). To compute the
conditional CDF for any variable node in the network, we can pass messages from leaf nodes
to root and then from the root node back to the leaves. For any given variable node, we can
then multiply all incoming messages to obtain the conditional CDF for that variable, up
to a scaling factor. We will now demonstrate this principle using the previous toy example
CDN.

Example 3.2. Consider the toy example of a CDN over four random variables 𝑈,𝑋, 𝑌, 𝑍
from Figure 10. Suppose we wish to compute 𝐹 (𝑦∣𝑥, 𝑧) = lim

𝑢→∞𝐹 (𝑢, 𝑦∣𝑥, 𝑧). This is equiv-

alent to message-passing in a CDN defined over variables 𝑋,𝑌, 𝑍 with 𝑈 marginalized out
(Figure 11) so that 𝑔(𝑥, 𝑦) = lim

𝑢→∞ 𝑔(𝑢, 𝑥, 𝑦). Thus the message updates are given by
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Figure 11: Flow of messages in the toy example CDN of Figure 10 with variable 𝑈 marginalized
out in order to compute the conditional CDF 𝐹 (𝑦∣𝑥, 𝑧).

𝜇𝑋→𝑔(𝑥) = 1, 𝜇𝑔→𝑌 (𝑦;𝑥) = ∂𝑥

[
𝑔(𝑥, 𝑦)𝜇𝑋→𝑔(𝑥)

]
= ∂𝑥

[
𝑔(𝑥, 𝑦)

]
𝜇𝑍→ℎ(𝑧) = 1, 𝜇ℎ→𝑌 (𝑦; 𝑧) = ∂𝑧

[
ℎ(𝑦, 𝑧)𝜇𝑍→ℎ(𝑧)

]
= ∂𝑧

[
ℎ(𝑦, 𝑧)

]
.

Once we have computed the above messages, we can evaluate the conditional CDF 𝐹 (𝑦∣𝑥, 𝑧)
at node 𝑌 as

𝐹 (𝑦∣𝑥, 𝑧) = 𝜇𝑔→𝑌 (𝑦;𝑥)𝜇ℎ→𝑌 (𝑦; 𝑧)

𝒵 =
∂𝑧

[
ℎ(𝑦, 𝑧)

]
∂𝑥

[
𝑔(𝑥, 𝑦)

]
𝒵 .

Note that the normalizing constant 𝒵 can be readily obtained by computing

𝒵 = lim
𝑦→∞ ∂𝑧

[
ℎ(𝑦, 𝑧)

]
∂𝑥

[
𝑔(𝑥, 𝑦)

]
= ∂𝑥,𝑧

[
lim
𝑦→∞ℎ(𝑦, 𝑧)𝑔(𝑥, 𝑦)

]
,

so that

𝐹 (𝑦∣𝑥, 𝑧) = 𝜇𝑔→𝑌 (𝑦;𝑥)𝜇ℎ→𝑌 (𝑦; 𝑧)

𝒵 =
∂𝑧

[
ℎ(𝑦, 𝑧)

]
∂𝑥

[
𝑔(𝑥, 𝑦)

]
∂𝑥,𝑧

[
lim
𝑦→∞ℎ(𝑦, 𝑧)𝑔(𝑥, 𝑦)

] =
lim
𝑢→∞ ∂𝑧

[
ℎ(𝑦, 𝑧)

]
∂𝑥

[
𝑔(𝑢, 𝑥, 𝑦)

]
∂𝑥,𝑧

[
lim

𝑢,𝑦→∞ℎ(𝑦, 𝑧)𝑔(𝑢, 𝑥, 𝑦)
]

=
∂𝑥,𝑧

[
lim
𝑢→∞𝐹 (𝑢, 𝑥, 𝑦, 𝑧)

]
∂𝑥,𝑧

[
lim

𝑢,𝑦→∞𝐹 (𝑢, 𝑥, 𝑦, 𝑧)
] .

Note that in the above, if we were to observe 𝑋 = 𝑥∗, 𝑍 = 𝑧∗, we could then evaluate
𝐹 (𝑦∣𝑥∗, 𝑧∗) given any candidate value 𝑦 for variable 𝑌 .

The above example shows that the message-passing algorithm can be used to compute
conditional CDFs of the form 𝐹 (x𝐴∣x𝐵), up to a normalizing constant 𝒵. We can readily

obtain distributions of the type 𝑃 (x𝐴∣x𝐵) from 𝐹 (x𝐴∣x𝐵) by computing ∂x𝐴

[
𝐹 (x𝐴∣x𝐵)

]
using the above message-passing scheme and then multiplying messages together to obtain
conditional PDFs. We note that computing the normalizing constant 𝒵 can be viewed as the
result of message-passing in a CDN in which the variables X𝐴 have been marginalized out in
addition to variables X𝑉 ∖{𝐴,𝐵} and then evaluating the resulting messages at the observed

values x𝐵. Equivalently, one can compute 𝒵 = lim
x𝐴→∞ ∂x𝐵

[
𝐹 (x𝐴,x𝐵)

]
after message-passing

with only variables in 𝑉 ∖ {𝐴,𝐵} marginalized out.
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∙ For each leaf variable node 𝛼′ and for all function nodes 𝑠 ∈ 𝒩 (𝛼′), propagate
𝜇𝛼′→𝑠(x) = 1. For each leaf function node with function 𝜙𝑠(𝑥𝛼′), send the messages
𝜇𝑠→𝛼′(x) = 𝜙𝑠(𝑥𝛼′).

∙ For each non-leaf variable node 𝛼 and neighboring function nodes 𝑠 ∈ 𝒩 (𝛼),

𝜇𝛼→𝑠(x) =
∏

𝑠′∈𝒩 (𝛼)∖𝑠
𝜇𝑠′→𝛼(x).

∙ For each non-leaf function node 𝑠 and neighboring variable nodes 𝛼 ∈ 𝒩 (𝑠),

𝜇𝑠→𝛼(x) = ∂x𝒩 (𝑠)∖𝛼

[
𝜙𝑠(x𝑠)

∏
𝛽∈𝒩 (𝑠)∖𝛼

𝜇𝛽→𝑠(x)

]
.

∙ For root node 𝛼 ∈ 𝑉 , repeat the 2𝑛𝑑 and 3𝑟𝑑 steps above from 𝛼 to leaf nodes 𝛼′.

Table 1: The derivative-sum-product (DSP) algorithm for inference in a CDN defined over discrete
variables.

3.3 Derivative-sum-product: A message-passing algorithm for inference in
cumulative distribution networks

Because the fundamental operations required for message-passing consist of differentia-
tion/finite differences, sums and products, we will refer to the above class of message-passing
algorithms as the derivative-sum-product (DSP) algorithm. For CDNs defined over discrete
ordinal variables, the DSP algorithm is shown in Table 1. As can be seen, for graphs defined
over discrete variables, the DSP algorithm is analogous to the sum-product algorithm with
the summation operation replaced by a finite difference operation. For graphs defined over
discrete ordinal variables that take on one of 𝐾 values, for an observed x, each message
𝜇𝛼→𝑠, 𝜇𝑠→𝛼 consists of a 𝐾-vector, analogous to messages in the sum-product algorithm. To
see this, we note that each time we compute a finite difference with respect to variables in
𝒩 (𝑠) ∖ 𝛼, we also evaluate the result at x𝒩 (𝑠)∖𝛼, ensuring that each message is a 𝐾-vector.

While the DSP algorithm for discrete variable networks for computing and evaluating
𝑃 (x) has the same order of complexity as the sum-product algorithm, the required complex-
ity increases for CDNs defined over continuous variables. For such models, we are required
to invoke the product rule of differential calculus in order to express these messages in terms
of the derivatives of CDN functions and combinations thereof. To this end, we need to define

two additional sets of messages 𝜆𝛼→𝑠(x) and 𝜆𝑠→𝛼(x) which correspond to ∂𝑥𝛼

[
𝜇𝛼→𝑠(x)

]
and ∂𝑥𝛼

[
𝜇𝑠→𝛼(x)

]
respectively. We first derive the expression for 𝜆𝛼→𝑠(x) by applying the

product rule of differential calculus to the message 𝜇𝛼→𝑠(x), bearing in mind that each of
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the messages 𝜇𝑠→𝛼(x) depends on variable 𝑋𝛼. This yields

𝜆𝛼→𝑠(x) = ∂𝑥𝛼

[
𝜇𝛼→𝑠(x)

]
= ∂𝑥𝛼

[ ∏
𝑠′∈𝒩 (𝛼)∖𝑠

𝜇𝑠′→𝛼(x)

]
= 𝜇𝛼→𝑠(x)

∑
𝑠′∈𝒩 (𝛼)∖𝑠

𝜆𝑠′→𝛼(x)

𝜇𝑠′→𝛼(x)
.

In order to derive the general expressions for 𝜇𝑠→𝛼(x) , 𝜆𝑠→𝛼(x), we first note that for
any two differentiable multivariate functions 𝑓(x), 𝑔(x), the product rule for computing the
higher order derivative of a product of functions is given by

∂y

[
𝑓(y)𝑔(y)

]
=
∑
y𝐴⊆y

∂y𝐴

[
𝑓(y)

]
∂y∖y𝐴

[
𝑔(y)

]
.

The key observation we make here is that to evaluate the above derivative for observed
y, we can evaluate each term in the summation for the observed y such that the above is
merely a sum of products of scalars. Thus, given a vector of observed variable values x, the
messages in the DSP algorithm for continuous variables will all consist of scalars, allowing
us to obtain numerical values for probabilities under the model.

To compute messages 𝜇𝑠→𝛼(x), 𝜆𝑠→𝛼(x) from 𝜇𝑠→𝛼(x), applying the above product rule
yields

𝜇𝑠→𝛼(x) = ∂x𝒩 (𝑠)∖𝛼

[
𝜙𝑠(𝑥𝛼,x𝒩 (𝑠)∖𝛼)

∏
𝛽∈𝒩 (𝑠)∖𝛼

𝜇𝛽→𝑠(x)

]

=
∑

𝐵⊆𝒩 (𝑠)∖𝛼
∂x𝐵

[
𝜙𝑠(x𝑠)

] ∏
𝛽∈𝐵

𝜇𝛽→𝑠(x)
∏

𝛽∈𝒩 (𝑠)∖{𝛼∪𝐵}
𝜆𝛽→𝑠(x) (20)

𝜆𝑠→𝛼(x) = ∂𝑥𝛼

[
𝜇𝑠→𝛼(x)

]
=

∑
𝐵⊆𝒩 (𝑠)∖𝛼

∂x𝐵 ,𝑥𝛼

[
𝜙𝑠(x𝑠)

] ∏
𝛽∈𝐵

𝜇𝛽→𝑠(x)
∏

𝛽∈𝒩 (𝑠)∖{𝛼∪𝐵}
𝜆𝛽→𝑠(x),

where we have made use of the tree-structure of the CDN to write the derivative of a
product of messages as a product of derivatives of the messages. The above updates then
define the DSP algorithm for CDNs defined over continuous variables, with a total of four
sets of messages defined solely in terms of the CDN functions, their derivatives and linear
combinations thereof. The message-passing algorithm for continuous CDNs is summarized
in Table 2 and is illustrated in Figure 12.

We see from Table 2 that the DSP algorithm grows exponentially in complexity as
the number of neighboring variable nodes for any given function increases, as the updates
at function nodes require one to perform a sum over all subsets of neighboring variables.
However, in many cases the computational complexity will be tractable for sparser graphs,
as demonstrated by the following example.

Example 3.3 (Derivative-sum-product on a linear first-order chain CDN). Consider the
CDN defined over 𝐾 variables such that the joint CDF over these variables is given by

𝐹 (x) =

𝐾−1∏
𝑘=1

𝜙𝑘(𝑥𝑘, 𝑥𝑘+1), (21)

29



Huang and Frey

(a) (b)

Figure 12: a) Computation of the message from a function node 𝑠 to a variable node 𝛼; b)
Computation of the message from a variable node 𝛼 to a function node 𝑠.

∙ For each leaf variable node 𝛼′ and for all function nodes 𝑠 ∈ 𝒩 (𝛼′), propagate
𝜇𝛼′→𝑠(x) = 1, 𝜆𝛼′→𝑠(x) = 0. For each leaf function node with function 𝜙𝑠(𝑥𝛼′),

send the messages 𝜇𝑠→𝛼′(x) = 𝜙𝑠(𝑥𝛼′), 𝜆𝑠→𝛼′(x) = ∂𝑥𝛼′

[
𝜙𝑠(𝑥𝛼′)

]
.

∙ For each non-leaf variable node 𝛼 and neighboring function nodes 𝑠 ∈ 𝒩 (𝛼),

𝜇𝛼→𝑠(x) =
∏

𝑠′∈𝒩 (𝛼)∖𝑠
𝜇𝑠′→𝛼(x),

𝜆𝛼→𝑠(x) = ∂𝑥𝛼

[
𝜇𝛼→𝑠(x)

]
= 𝜇𝛼→𝑠(x)

∑
𝑠′∈𝒩 (𝛼)∖𝑠

𝜆𝑠′→𝛼(x)

𝜇𝑠′→𝛼(x)
.

∙ For each non-leaf function node 𝑠 and neighboring variable nodes 𝛼 ∈ 𝒩 (𝑠),

𝜇𝑠→𝛼(x) =
∑

𝐵⊆𝒩 (𝑠)∖𝛼
∂x𝐵

[
𝜙𝑠(x𝑠)

] ∏
𝛽∈𝐵

𝜇𝛽→𝑠(x)
∏

𝛽∈𝒩 (𝑠)∖{𝛼∪𝐵}
𝜆𝛽→𝑠(x),

𝜆𝑠→𝛼(x) = ∂𝑥𝛼

[
𝜇𝑠→𝛼(x)

]
=

∑
𝐵⊆𝒩 (𝑠)∖𝛼

∂x𝐵 ,𝑥𝛼

[
𝜙𝑠(x𝑠)

] ∏
𝛽∈𝐵

𝜇𝛽→𝑠(x)
∏

𝛽∈𝒩 (𝑠)∖{𝛼∪𝐵}
𝜆𝛽→𝑠(x).

∙ For root node 𝛼 ∈ 𝑉 , repeat the 2𝑛𝑑 and 3𝑟𝑑 steps above from 𝛼 to leaf nodes 𝛼′.

Table 2: The derivative-sum-product (DSP) algorithm for inference in a CDN defined over contin-
uous variables.

so that the variable nodes are connected in the chain-structured graph shown in Figure 13.
In this case, the DSP messages can be written as
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Figure 13: The DSP algorithm for a chain-structured CDN.

𝜇𝑘+1(x) ≡ 𝜇𝜙𝑘→𝑋𝑘+1
(x)

= ∂𝑥𝑘

[
𝜙𝑘(𝑥𝑘, 𝑥𝑘+1)

]
𝜇𝑘(x) + 𝜙𝑘(𝑥𝑘, 𝑥𝑘+1)𝜆𝑘(x), 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 − 1

𝜆𝑘+1(x) ≡ 𝜆𝜙𝑘→𝑋𝑘+1
(x)

= ∂𝑥𝑘,𝑥𝑘+1

[
𝜙𝑘(𝑥𝑘, 𝑥𝑘+1)

]
𝜇𝑘(x) + ∂𝑥𝑘+1

[
𝜙𝑘(𝑥𝑘, 𝑥𝑘+1)

]
𝜆𝑘(x), 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 − 1.

Example 3.4 (Sampling from a cumulative distribution network). We can further take
advantage of the derivative-sum-product algorithm for generating samples from the CDF
modelled by a CDN. We can proceed as follows: arbitrarily select a variable in the model,
say 𝑋1. Then, generate a sample 𝑥∗1 from its marginal CDF 𝐹 (𝑥1) (which we obtain by
marginalizing out all other variables). Given 𝑥∗1, we can then proceed to generate samples
for its children by marginalizing out all other unobserved variables and then sampling from
the conditional distribution 𝐹 (𝑥2∣𝑥∗1). We can continue this way until we have sampled a
complete configuration x∗ = [𝑥∗1, ⋅ ⋅ ⋅ , 𝑥∗𝐾 ]. The algorithm for sampling from the joint CDF
modelled by a CDN is then given by

∙ Pick a sampling ordering 𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝐾 ,

∙ For variable 𝑋𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾, compute

𝐹 (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘) = lim
𝑥𝑘+1,⋅⋅⋅ ,𝑥𝐾→∞𝐹 (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘, 𝑥𝑘+1 ⋅ ⋅ ⋅ , 𝑥𝐾).

∙ Sample 𝑥∗𝑖 from

𝐹 (𝑥𝑘∣𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘−1) =
∂𝑥1,⋅⋅⋅ ,𝑥𝑘−1

[
𝐹 (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘)

]
lim

𝑥𝑘→∞ ∂𝑥1,⋅⋅⋅ ,𝑥𝑘−1

[
𝐹 (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘)

] .
From the above we see that if the CDN has a tree structure, then we can compute the
conditional CDFs 𝐹 (𝑥𝑘∣𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘−1) exactly via DSP. In the case of a CDN with cycles, we
can always convert it to one with a tree structure by clustering variables and corresponding
function nodes, as can be done in the case of factor graphs (Kschischang, Frey and Loeliger,
2001). This generally incurs an increase in function node complexity, but with the benefit of
being able to sample from the joint CDF defined by the CDN and not from an approximation
thereof.
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3.4 Discussion

We have presented the derivative-sum-product algorithm for computing derivatives in a
CDN. We have shown that the algorithm is an analog of the sum-product algorithm in
factor graphs, so that for tree-structured graphs the algorithm yields exact derivatives of
the joint CDF. For graphs defined over continuous variables, the DSP algorithm can be
implemented through two sets of messages in order to compute the higher order derivatives
of the joint CDF. While we have presented the DSP algorithm for computing derivatives
given a set of CDN functions, we have not addressed here the issue of how to learn these CDN
functions from data. A possible method would be to run DSP to obtain the joint PDF and
then maximize this with respect to model parameters for a particular x. Another issue we
have not addressed is how to perform inference in graphs with cycles: an interesting future
direction would be to investigate exact or approximate methods for doing so and connections
to methods in the literature (Minka, 2001; Neal, 1993) for doing this in traditional graphical
models. We will further discuss these issues in the concluding section.

Having defined the CDN and having described the DSP algorithm, we will now proceed
to apply both of these to the general problem of learning to rank from examples. As we will
see, the ability to model a joint CDF using a graphical framework will yield advantages in
both representation and computation for this class of problems.

4. Learning to rank in multiplayer team-based games with cumulative
distribution networks

In this section, we will apply CDNs and the DSP algorithm to the problem of structured
ranking learning in which the goal is to learn a model for ranking players in a multiplayer
game. For this problem, we observe the scores achieved by several players over many games
𝑡 = 1 ⋅ ⋅ ⋅ , 𝑇 in which players interactively compete in groups, or teams, which change with
each game. For any given game, players compete in teams so that at the end of each game,
each player will have achieved a score as a result of actions taken by all players during the
game. For example, these player scores could correspond to the number of targets destroyed
or the number of flags stolen, so that a higher player score reflects a better performance
for that player. Here we will define a game Γ𝑡 as a triplet (𝒫𝑡, 𝒯𝑡,𝒪𝑡), where 𝒫𝑡 ⊂ 𝒫 is
a subset of the set 𝒫 of all players and 𝒯𝑡 is a partition of 𝒫𝑡 into sets corresponding to
teams for game Γ𝑡, so that if 𝒯𝑡 = {𝒯 1

𝑡 , ⋅ ⋅ ⋅ , 𝒯 𝑁
𝑡 } then there are 𝑁 teams for game Γ𝑡 and

player 𝑘 ∈ 𝒫𝑡 is assigned to team 𝑛 for game Γ𝑡 if and only if 𝑘 ∈ 𝒯 𝑛
𝑡 . For example, a game

involving six players labelled 1, 2, 3, 4, 5, 6 organized into three teams of two players each
could correspond to 𝒫𝑡 = {1, 2, 3, 4, 5, 6} and 𝒯𝑡 = {{1, 2}, {3, 4}, {5, 6}}. Without loss of
generality we will label the teams in a game by 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 where each team corresponds
to a set in the partition 𝒯𝑡.

In addition to the above, we will denote by 𝒪𝑡 the outcome of a game that consists
of the pair (x𝒫𝑡 , r𝒯𝑡), where x𝒫𝑡 ∈ ℝ∣𝒫𝑡∣ is a vector of player scores for game Γ𝑡 and the
set r𝒯𝑡 is defined as a partially ordered set of team performances, or set of ranks for each
team. Such ranks are obtained by first computing the sum of the player scores for each
team 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 , and then ranking the teams by sorting the resulting sums. We will
refer to these sums in the sequel as the team scores 𝑡𝑛. An example of this for the previous
example of a game with six players assigned to three teams is x𝒫𝑡 = [30 12 15 25 100 23]𝑇 ,
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so that r𝒯𝑡 = {2, 1, 3} is the corresponding partially ordered set of team rankings. We
will also denote by x𝑛 ∈ ℝ∣𝒯 𝑛

𝑡 ∣ the vector of player scores for team 𝑛 in game Γ𝑡. Games
can also be classified into various types, such that the sizes and/or number of teams are
constrained in different ways for different game types. For example, a ”SmallTeam” game
type would consist of two teams with at most two players per team, whereas a ”FreeForAll”
game type would constrain the number of teams to be at most eight, with one player per
team. Furthermore, the team rankings are a function of unweighted sums of player scores:
although there is no reason a priori to weigh the scores of players differently for determining
the rank of a team, one could extend the above scheme for determining team rankings to
weigh player scores according to player type or player-specific features.

Given the above, the goal is to construct a model that will allow us to predict the
outcome 𝒪𝑡 of the new game before it begins, given 𝒫𝑡 and previous game outcomes
𝒪1, ⋅ ⋅ ⋅ ,𝒪𝑡−1. In particular, we wish to construct a model that will minimize the num-
ber of mis-ordered teams based on the set of team performances r𝒯𝑡 for game Γ𝑡. Here,
the probability model for the given game should account for the team-based structure of
games, such that team performances are determined by individual player scores and a game
outcome is determined by the ordering of team scores. We will demonstrate here that the
graphical framework of CDNs makes it straightforward to model both the notion of ordering
of variables in the model as well as statistical independence relationships among these vari-
ables. In particular, the model we will construct here will be amenable to exact inference
via the DSP algorithm.

Our model will be similar in design to the TrueSkillTM model of (Herbrich, Minka and
Graepel, 2007) for skill rating in Halo 2TM, whereby each player 𝑘 ∈ 𝒫𝑡 is assigned a proba-
bility distribution over latent skill variables 𝑆𝑘, which is then inferred from individual player
scores over multiple games using the expectation propagation algorithm for approximate
inference (Minka, 2001). Inference in the TrueSkillTM model thus consists of applying ex-
pectation propagation to a factor graph for a given game in order to update probabilities
over player skills. An example of such a factor graph is shown in Figure 14. In TrueSkillTM,
the factors connecting team-specific nodes to one another dictate a constraint on relative
differences in the total player scores between teams, while factors connecting player nodes
to their team-specific nodes enforce the constraint that the team score is determined by the
sum of player scores. Finally, for teams 𝑛, 𝑛+1, there is a difference variable 𝐻𝑛,𝑛+1 and a
corresponding factor which declares a tied rank between two teams if the difference between
the two team scores is below some threshold parameter. Having described the TrueSkill
model, we will now proceed to describe an alternate model formulated using the framework
of CDNs.

4.1 A cumulative distribution network
for modelling multiplayer game outcomes

Here we will examine a model for multiplayer game outcomes that will be modeled using a
CDN. The model will be designed on a game-by-game basis in which the team assignments
of players for a given game determines the connectivity of the graph 𝒢 for the CDN. In our
model the team variables will correspond to the ranks of teams: we will call such variables
team performances and denote these as 𝑅𝑛 for team 𝑛 in order to contrast these with the
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Figure 14: The TrueSkillTM factor graph for a particular Halo 2TM game involving three teams
with two players each with the team scores 𝑇1 = 𝑡1, 𝑇2 = 𝑡2, 𝑇3 = 𝑡3 with 𝑡1 < 𝑡2 < 𝑡3 so that team 3
here achieved the highest total of player scores. The variables 𝐻12,𝐻23 correspond to differences in
team scores which determine the ranking of teams, so that teams 𝑛 and 𝑛+1 are tied in their rankings
if the difference in their team scores is below a threshold parameter. Here, 𝒫𝑡 = {1, 2, 3, 4, 5, 6} and
𝒯𝑡 = {{1, 2}, {3, 4}, {5, 6}}. Latent variables correspond to nodes in red and observed variables
correspond to nodes in blue. Each player 𝑘 = 1, 2, 3, 4, 5, 6 is assigned a skill function that reflects
the distribution of that player’s skill level 𝑆𝑘 given past game outcomes. Each player then achieves
score 𝑋𝑘 in any given game and team scores 𝑇𝑛, 𝑛 = 1, 2, 3 are then determined as the sum of player
scores for each team.

team score variables 𝑇𝑛 in the TrueSkill model. Our model will account for player scores 𝑋𝑘

for each player 𝑘 ∈ 𝒫𝑡 in the game, the team performances 𝑅𝑛 for each team 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁
in the game and each player’s skill function 𝑠𝑘(𝑥𝑘), which is a CDF specific to each player.
For any given game, 𝑅𝑛 will be determined as the sum of the player scores for team 𝑛,
and then sorting the resulting sums so that 𝑅𝑛 corresponds to the rank of team 𝑛. The
set of observed team performances r𝒯𝑡 will be given by the joint configuration of the 𝑅𝑛

variables for that game. The goal will then be to adapt player skill functions 𝑠𝑘(𝑥𝑘) given
previous game outcomes. We will design our model according to two principles. First, the
relationship between player scores and team performances is modeled as being stochastic,
as both player scores and team assignments vary from one game to the next, so that given
knowledge of the players in that game and their team assignments, there is some uncertainty
in how a team will rank once the game is over. Second, team performance variables depend
on those of other teams in the game, so that each team’s performance should be linked to
that of other teams in a game.

The CDN framework allows us to satisfy both desiderata in the form of modelling
constraints on the marginal CDFs for variables in the model. To address the first point, we
will require a set of CDN functions that connect player scores to team performances. Here
we will make use of the cumulative model for ordinal regression (see Appendix) that relates a
linear function 𝑓(x) = w𝑇x on inputs x to a single output ordinal variable 𝑦 ∈ {𝑟1, ⋅ ⋅ ⋅ , 𝑟𝐿}
so that ℙ[𝑦 = 𝑟𝑙] = ℙ[𝜃(𝑟𝑙−1) < 𝑓(x)+𝜖 ≤ 𝜃(𝑟𝑙)] = 𝐹𝜖(𝜃(𝑟𝑙)−𝑓(x))−𝐹𝜖(𝜃(𝑟𝑙−1)−𝑓(x)), where
𝜖 is an additive noise variable and 𝜃(𝑟0), ⋅ ⋅ ⋅ , 𝜃(𝑟𝐿) are the cutpoint parameters of the model
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with 𝜃(𝑟0) = −∞, 𝜃(𝑟𝐿) =∞. Equivalently, we can write ℙ[𝑦 ≤ 𝑟𝑙] = ℙ[𝜖 ≤ 𝜃(𝑟𝑙)−𝑓(x)]. In
the context of multiplayer games, we perform separate ordinal regressions for different game
types, as the cutpoints that are learned for a given game type may vary between different
game types due to differing team sizes between game types. For a given game type, we
treat the set of all games as a bag of pairs of player score vectors x𝑛 and team performances
𝑟𝑛 from which cutpoints in an ordinal regression model can be learned. Thus, we learn a
set of cutpoints 𝜃(𝑟0) < ⋅ ⋅ ⋅ < 𝜃(𝑟𝐿) once using all of the games in the training data set
for a given game type. Team performances are treated as being independent: thus, we can
use the CDN framework to augment the above parametric model in order to account for
statistical dependencies between multiple team performances in any given game.

We will model multiplayer games using a CDN in which players are grouped into teams
and teams compete with one another. If there are 𝑁 teams for any given game, then we
can assign a CDN function 𝑔𝑛 for each team such that

𝑔𝑛(x𝑛, 𝑟𝑛) =

∫ x𝑛

−∞
𝐹
(
𝜃(𝑟𝑛);1

𝑇u, 𝜎2
)
𝑃
(
u
)
𝑑u

where 𝐹
(
𝜃(𝑟𝑛);1

𝑇u, 𝜎2
)
is a cumulative model relating input player scores to output team

performance and x𝑛, 𝑟𝑛 are the player scores and team performance for team 𝑛. The regres-
sion function in the cumulative model is given by 𝑓(x) = w𝑇x with w set to the vector of
ones 1, as we weigh the contributions of players on a team equally. Furthermore, 𝜃(𝑟𝑛) are
the cutpoints that define contiguous intervals in which 𝑟𝑛 is the ranking for team 𝑛 based
on that team’s performance and 𝑃 (u) is a probability density over the vector of player
scores u. Once the cutpoints have been estimated by ordinal regression, we will model the
distributions 𝐹

(
𝜃(𝑟𝑛);1

𝑇u, 𝜎2
)
, 𝑃
(
u
)
in Equation (22) as

𝐹
(
𝜃(𝑟𝑛);1

𝑇u, 𝜎2
)
= Φ

(
𝜃(𝑟𝑛);1

𝑇u, 𝜎2
)
, (22)

𝑃 (u) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(u;𝜇1, 𝜎2I).

To address the fact that teams compete in any given game, we model ordinal relation-
ships between team performance using the notion of stochastic orderings (Section 2.3), so
that for two teams with team performances 𝑅𝑋 , 𝑅𝑌 , 𝑅𝑋 ⪯ 𝑅𝑌 if 𝐹𝑅𝑋

(𝑡) ≥ 𝐹𝑅𝑌
(𝑡)∀ 𝑡 ∈ ℝ,

where 𝐹𝑅𝑋
(⋅), 𝐹𝑅𝑌

(⋅) are the marginal CDFs of 𝑅𝑋 , 𝑅𝑌 . This then allows us to design
models in which we can express differences in team performances in the form of pairwise
constraints on their marginal CDFs. We note at this juncture that while it is possible to
model such stochastic ordering constraints between variables using directed, undirected or
factor graphs, doing so introduces additional constraints that are likely to increase the dif-
ficulty of performing inference under such models. In contrast, the CDN framework here
allows us to explicitly specify such stochastic ordering constraints, in addition to allowing
for tractable computations in the resulting model. Thus, although each of the 𝑅𝑛 variables
are a deterministic function of the sum of player scores, we can nevertheless model them as
being stochastic using the framework of CDNs to specify orderings amongst the 𝑅𝑛 variables
. By contrast, it will generally be more difficult in terms of computation and representa-
tion to enforce constraints of the type

[
𝑅𝑛 ⪯ 𝑅𝑛+1

]
in a directed/undirected/factor graph

model.
For the proposed CDN model, given 𝑁 ranked teams, we can thus define 𝑁−1 functions

ℎ𝑛,𝑛+1 so that
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ℎ𝑛,𝑛+1(𝑟𝑛, 𝑟𝑛+1) = Φ

([
𝑟𝑛

𝑟𝑛+1

]
;
[

𝑟𝑛
𝑟𝑛+1

]
,Σ

)
where

Σ =

[
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2

]
and 𝑟𝑛 ≤ 𝑟𝑛+1 are chosen without loss of generality such that 𝑟𝑛 = 𝑛 so as to enforce
𝑅𝑛 ⪯ 𝑅𝑛+1 in the overall model. Finally, we will use a skill function 𝑠𝑘(𝑥𝑘) for each player
𝑘 to model that player’s distribution over game scores given previous game outcomes. The
player performance nodes in the CDN will then be connected to the team performance
nodes via the above CDN functions 𝑔𝑛 and team performance variable nodes 𝑅𝑛 are linked
to one another via the above CDN functions ℎ𝑛,𝑛+1. The joint CDF for a given game Γ𝑡

with 𝑁 teams is then given by

𝐹 (x𝒫𝑡 , r𝒯𝑡) =
𝑁∏

𝑛=1

𝑔(x𝑛, 𝑟𝑛)

𝑁−1∏
𝑛=1

ℎ𝑛,𝑛+1(𝑟𝑛, 𝑟𝑛+1)
∏
𝑘∈𝒫𝑡

𝑠𝑘(𝑥𝑘). (23)

The above functions and model variables jointly define the CDN for modelling multi-
player games. An example is given in Figure 15 for a game with three teams and six players.
One can readily verify from the CDN of Figure 15 using Proposition 2.11 that for the above
model and for any given game, the stochastic ordering relationship 𝑅1 ⪯ 𝑅2 ⪯ ⋅ ⋅ ⋅ ⪯ 𝑅𝑁

as defined above can be enforced by marginalizing over all player scores in the CDN and
having selected appropriate cutpoints that satisfy 𝜃(𝑟1) < 𝜃(𝑟2) < 𝜃(𝑟3) and parameters
𝑟1 < 𝑟2 < 𝑟3, so that we have 𝐹 (𝑟1) ≥ 𝐹 (𝑟2) ≥ 𝐹 (𝑟3).

Figure 15: CDN for the player and team performances in a game of Halo 2TM for three teams with
two players each. Each player 𝑘 = 1, 2, 3, 4, 5, 6 achieves score 𝑋𝑘 in a match and team performances
𝑅𝑛, 𝑛 = 1, 2, 3 are determined based on the sum of player performances for each team.

Having presented the CDN for modelling multiplayer games, we will now proceed to
describe a method for predicting game outcomes in which we update player skill functions
after each game using message-passing.

4.2 Ranking players in multiplayer games
using the derivative-sum-product algorithm

Here we will apply the DSP algorithm in the context of ranking players in multiplayer games
with a team structure, where the problem consists of jointly predicting multiple ordinal
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output variables. It should be noted that while it may be possible to construct similar
models using a directed, undirected or factor graph, the CDN allows us to simultaneously
specify both ordinal and statistical independence relationships among model variables while
allowing for a tractable inference algorithm.

In order to compute the DSP messages using the above CDN functions, we must compute
the derivatives of all CDN functions. Since all of our functions are themselves Gaussian
CDFs, the derivatives ∂x𝐴

[
𝜙𝑠(x𝑠)

]
can be easily evaluated with respect to variables X𝐴 as

∂x𝐴

[
Φ
(
x;𝝁,Σ

)]
= 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

(
x𝐴;𝝁𝐴,Σ𝐴

)
Φ
(
x𝐵; �̃�𝐵, Σ̃𝐵

)
where

x =

[
x𝐴

x𝐵

]
, 𝝁 =

[
𝝁𝐴

𝝁𝐵

]
, Σ =

[
Σ𝐴 Σ𝐴,𝐵

Σ𝑇
𝐴,𝐵 Σ𝐵

]
,

�̃�𝐵 = 𝝁𝐵 +Σ𝑇
𝐴,𝐵Σ

−1
𝐴 (x𝐴 − 𝝁𝐴),

Σ̃𝐵 = Σ𝐵 −Σ𝑇
𝐴,𝐵Σ

−1
𝐴 Σ𝐴,𝐵.

The message computations in the CDN are given in the Appendix. We ensure that each
message is properly normalized by locally computing the constant 𝒵 = lim

𝑧→∞𝜇(𝑧) for each

message and multiplying each message pair 𝜇, 𝜆 by 𝒵−1.
Given the above CDN model for multiplayer games, we would like to then estimate the

player skill functions 𝑠𝑘(𝑥𝑘) for each player 𝑘 from previous games played by that player.
Denote by the set 𝑇𝑘 ⊆ {1, ⋅ ⋅ ⋅ , 𝑇} the set of games in which player 𝑘 participated. We
then seek to estimate 𝑠𝑘(𝑥𝑘) for player 𝑘 given previous team performances r𝒯𝑡 , 𝑡 ∈ 𝑇𝑘 and
player scores for all other players x𝒫𝑡∖𝑘 for all games 𝑡 ∈ 𝑇𝑘 in which player 𝑘 participated.

Denote by 𝒪−𝑘
𝑡 the outcome of a game with the player score for player 𝑘 removed from x𝒫𝑡 .

We will define the skill function 𝑠𝑘(𝑥𝑘) for a player to be given by

𝑠𝑘(𝑥𝑘) = 𝐹
(
𝑥𝑘∣{𝒪−𝑘

𝑡 }𝑡∈𝑇𝑘

)
=
∏
𝑡∈𝑇𝑘

𝐹 (𝑥𝑘∣𝒪−𝑘
𝑡 ).

The above expression for the skill function 𝑠𝑘(𝑥𝑘) for player 𝑘 corresponds to the conditional

distribution 𝐹
(
𝑥𝑘∣{𝒪−𝑘

𝑡 }𝑡∈𝑇𝑘

)
given all past games played by player 𝑘 with the assumption

that team performances and player scores are independently drawn from CDFs 𝐹 (r𝒯𝑡 ,x𝒫𝑡)
for 𝑡 = 1, ⋅ ⋅ ⋅ , 𝑇 . The skill function 𝑠𝑘 can then be readily estimated by the DSP algorithm,
since each game outcome is modeled by a tree-structured CDN. More precisely, we first
initialize 𝑠𝑘(𝑥𝑘) = Φ(𝑥𝑘;𝜇, 𝛽

2). For each game Γ𝑡 we can perform message-passing to
obtain the conditional CDF 𝐹 (𝑥𝑘∣𝒪−𝑘

𝑡 ) = 𝜇𝑔𝑛→𝑋𝑘
(r𝒯𝑡 ,x𝒫𝑡∖𝑘) for player 𝑘 (assuming the

message 𝜇𝑔𝑛→𝑋𝑘
has been properly normalized as described above) and then perform a

multiplicative update 𝑠𝑘(𝑥𝑘) ← 𝑠𝑘(𝑥𝑘)𝜇𝑔𝑛→𝑋𝑘
. The skill function 𝑠𝑘(𝑥𝑘) can then be used

to make predictions for player 𝑘’s scores in future games. We will proceed in the next
section to apply the model and the above inference procedure to the problem of modelling
Halo 2TM games.
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4.3 The Halo 2TM Beta dataset

The Halo 2TM Beta dataset (v1.1)1 consists of player scores for four game types (“HeadTo-
Head”, “FreeForAll”, “SmallTeams” and “LargeTeams”) over a total of 6,465 players. The
descriptions for each of the four game modes are given below.

∙ HeadToHead: 6227 games/1672 players, one player competing against another player

∙ FreeForAll: 60022 games/5943 players, up to eight players playing against each other

∙ SmallTeams: 27539 games/4992 players, up to four players per team, two competing
teams

∙ LargeTeams: 1199 games/2576 players, up to eight players per team, two competing
teams

To construct the above CDN model, we set the cutpoints 𝜃(𝑟𝑛) in the above cumulative
model using ordinal regression of team ranks on team performances for all games in the
training set. We initialized all player skill functions to 𝑠𝑘(𝑥𝑘) = Φ(𝑥𝑘;𝜇, 𝛽

2). The set
of parameters {𝜇, 𝜌, 𝛽, 𝜎} in the CDN model was set to {25,−0.95, 20, 0.25} for “Head-
ToHead”, {50,−0.2, 10, 0.2} for “FreeForAll”, {20,−0.1, 10, 0.027} for “SmallTeams” and
{1,−0.9, 1, 0.01} for “LargeTeams” game modes. For each of these game modes, we ap-
plied the DSP algorithm as described above in order to obtain updates for the player skill
functions 𝑠𝑘(𝑥𝑘). An example of such an update at the end of a game with four competing
players is shown in Figure 16.

Figure 16: An example of derivative-sum-product updates for a four-player free-for-all game, with
the derivative of the skill functions before the updates (blue) and afterwards (red).

Before each game, we can predict the team performances using the player skills learned

thus far via the rule 𝑥∗𝑘 = argmax
𝑥𝑘

∂𝑥𝑘

[
𝑠𝑘(𝑥𝑘)

]
. For each game, the set of team performances

is then defined by the ordering of teams once the game is over, where we add the predicted
player scores 𝑥∗𝑘 together for each team and sorting the resulting sums in ascending order.
For any predicted set of team performances, an error is incurred for that game if two
teams for that game were misranked such that the number of errors for a given game is∑𝑁−1

𝑛=1

∑𝑁
𝑚>𝑛[𝑅𝑛 ≤ 𝑅𝑚] ∧ [𝑅𝑡𝑟𝑢𝑒

𝑛 > 𝑅𝑡𝑟𝑢𝑒
𝑚 ]. One can then compute an error rate over the

entire set of games for which we make predictions about team performances.

1. Credits for the use of the Halo 2TM Beta Dataset are given to Microsoft Research Ltd. and Bungie.
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A plot showing the average prediction error rate obtained for the above CDN models over
five runs of DSP is shown in Figure 17. It is worth noting that our choice of multivariate
Gaussian CDFs as CDN functions in the above model requires that we use a sampling
method in order to evaluate the CDN functions, so that the error bars over the five runs
are shown. In addition, Figure 17 also shows the error rates reported by (Herbrich, Minka
and Graepel, 2007) for TrueSkillTM and ELO (Elo, 1978), which is a statistical rating
system used in chess. Here, we see that the ability to specify both ordinal relationships
and statistical dependence relationships between model variables using a CDN allows us to
achieve higher predictive accuracy than either TrueSkillTMor the ELO method.
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Figure 17: Prediction error on the Halo 2TM Beta dataset (computed as the fraction of team
predicted incorrectly before each game) for DSP, ELO (Elo, 1978) and TrueSkillTM (Herbrich,
Minka and Graepel, 2007) methods. Error bars over five runs of DSP are shown.

4.4 Discussion

In this section we presented a model and method for learning to rank in the context of
multiplayer team-based games such as Halo 2TM. Our model represent both statistical
dependence relationships and notions of orderings of variables in the model such as team
performances and individual player scores. We then used the DSP algorithm to compute
conditional CDFs for each player’s score. Comparisons to the TrueSkillTM and ELO meth-
ods for factor graph models show that our model and method allows both for fast estimation
and improved test error on the Halo 2TM Beta dataset.

While the above method has the advantage of providing a flexible probabilistic model
and allowing for tractable inference, the choice of multivariate Gaussian CDFs for CDN
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functions requires the use of sampling methods in order to evaluate DSP messages. Future
work could focus on finding faster parameterizations of the CDN functions that do not
require sampling.

5. Conclusion

We have proposed the CDN as a graphical model for joint CDFs over many variables. We
have shown that the conditional independence properties of a CDN are distinct from the in-
dependence properties of directed, undirected and factor graphs. However, these properties
include, but are not limited to, those for bidirected graphs. We have then demonstrated that
inference in a CDN corresponds to computing derivatives/finite differences. We described
the DSP algorithm for computing such derivatives/finite differences by passing messages in
the CDN where each message corresponds to local derivatives of the joint CDF.

We used the graphical framework provided by CDNs to formulate models and methods
for learning to rank in a structured setting in which we must account for statistical depen-
dence relationships between model variables. We first applied the DSP algorithm to the
problem of ranking in multiplayer gaming where players compete in teams. The DSP algo-
rithm allowed us to compute distributions over player scores given previous game outcomes
while accounting for the team-based structure of the games, whereby we were able to show
improved results over previous methods. The CDN framework was then used to construct
loss functionals for structured ranking learning where we wish to account for statistical
dependence relationships which arise in ranking a set of objects. We showed that many
probability models for rank data can be viewed as particular CDNs with different connec-
tivities between pairwise object preferences. Based on the work and results presented, we
can recommend future directions of research pertaining to the methods presented in this
manuscript.

5.1 Future work

While we presented a framework for constructing a graphical model for a joint CDF, there
may be applications in which one may wish to instead optimize the log-probability density
log𝑃 (x∣𝜽). We presented the DSP algorithm for both discrete and continuous-variable net-
works and we showed how DSP could be used to compute the probability density 𝑃 (x∣𝜽)
from the joint CDF 𝐹 (x∣𝜽) modelled by the CDN. In order to perform maximum likelihood
learning in which we wish to maximize the log-likelihood ℒ(x;𝜽) = log𝑃 (x∣𝜽) with respect
to a parameter vector 𝜽 for a given set of observed variables x, one can use modified ver-
sions of DSP messages in order to compute the gradient ∇𝜽ℒ(x;𝜽) of the log-likelihood.
The guiding principle here is that the gradient operator can be distributed amongst local
functions in the CDF, much like the differentiation operation in DSP, so that by modify-
ing DSP messages appropriately we can obtain the gradient ∇𝜽ℒ(x;𝜽). Once computed,
the gradient vector can then be used in a gradient-descent algorithm to optimize the log-
likelihood. Future research in this direction could be directed at establishing what class
of graphs can yield tractable gradient computations, as well as the complexity/accuracy
tradeoffs involved in computing gradients in graphs with cycles.

We have shown that our message-passing algorithm leads to the correct set of derivatives
of the joint CDF provided that the underlying graph is a tree. As with the sum-product
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algorithm for factor graphs, if the graph contains cycles, then the derivative-sum-product is
no longer guaranteed to yield the correct mixed derivatives of the joint CDF, so that mes-
sages may begin to ‘oscillate’ as they propagate around cycles in the graph. One important
direction to pursue is to establish conditions under which the presence of cycles will not
lead to oscillations in messages: one could resort to a similar methodology as that employed
by (Weiss and Freeman, 2001), where a graph with cycles is “unwrapped” and the resulting
messages are analyzed.

We showed that for graphs defined over continuous variables, the complexity of comput-
ing DSP message updates at a given function node increased exponentially with the number
of neighboring variable nodes, as one has to sum over products of messages incoming from
all subsets of variables connected to the function node. However, it may be possible to
approximate messages using simpler, tractable forms such as conditional univariate Gaus-
sian CDFs. Future work here would be to establish tractable methods for performing such
approximations and gauge the performance of such an approximate scheme for inference in
CDNs on both synthetic and real-world data.

As we have demonstrated, the graph separation criterion for assessing conditional inde-
pendence in CDNs includes those of bidirected graphs (Richardson and Spirtes, 2002). As
such graphs are a special case of mixed graphs containing undirected, directed and bidi-
rected edges, a future avenue of research would be to investigate whether one can tractably
approximate such mixed graphical models using a hybrid graphical formulation combining
the CDN model with that of factor graphs for joint probability density/mass functions.
The Bayesian learning approach adopted by (Silva and Ghahramani, 2009b) could provide
a framework with which to qualitatively and quantitatively compare the use of CDNs for
constructing such mixed graphical models.
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6. Appendix

6.1 Derivation of the derivative-sum-product algorithm

To begin, let 𝒢 = (𝑉, 𝑆,𝐸) be a tree-structured CDN and suppose we wish to compute the
joint probability 𝑃 (x) and evaluate it at observation x. We note that we can root the graph
at some node 𝛼 and we can write the joint CDF as

𝐹 (x) =
∏

𝑠∈𝒩 (𝛼)

𝑇𝑠
(
x𝜏𝛼𝑠

)
,

where x𝜏𝛼𝑠 denotes the vector of configurations for all variables in the subtree 𝜏𝛼𝑠 rooted at
variable node 𝛼 and containing function node 𝑠 (Figure 18), and 𝑇𝑠

(
x𝜏𝛼𝑠

)
corresponds to

the product of all functions located in the subtree 𝜏𝛼𝑠 .
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Figure 18: Example of the subtrees 𝜏𝛼𝑠 , 𝜏
𝑠
𝛽 for a tree-structured CDN given by the graph 𝒢.

Now suppose we are interested in computing the probability

𝑃 (x) = ∂x

[
𝐹 (x)

]
= ∂x

[ ∏
𝑠∈𝒩 (𝛼)

𝑇𝑠
(
x𝜏𝛼𝑠

)]
.

Here, we take advantage of the fact that the graph has a tree structure, so that

∂x

[ ∏
𝑠∈𝒩 (𝛼)

𝑇𝑠
(
x𝜏𝛼𝑠

)]
= ∂𝑥𝛼

[ ∏
𝑠∈𝒩 (𝛼)

∂x𝜏𝛼𝑠 ∖𝛼

[
𝑇𝑠
(
x𝜏𝛼𝑠

)]]
= ∂𝑥𝛼

[ ∏
𝑠∈𝒩 (𝛼)

𝜇𝑠→𝛼

(
x𝜏𝛼𝑠

)]
.

We have introduced the set of functions 𝜇𝑠→𝛼(x) ≡ 𝜇𝑠→𝛼

(
x𝜏𝛼𝑠

)
defined by

𝜇𝑠→𝛼(x) ≡ 𝜇𝑠→𝛼

(
x𝜏𝛼𝑠

)
= ∂x𝜏𝛼𝑠 ∖𝛼

[
𝑇𝑠
(
x𝜏𝛼𝑠

)]
, (24)

where we have assumed that each of the derivatives/finite differences have been evaluated
at the desired values x𝜏𝛼𝑠 ∖𝛼. By its definition, 𝜇𝑠→𝛼(x) only depends on variables in the
subtree 𝜏𝛼𝑠 and corresponds to the higher order derivative of the joint CDF with respect to
variables in the subtree 𝜏𝛼𝑠 ∖𝛼. We can thus view the functions 𝜇𝑠→𝛼(x) as messages being
passed from each function node 𝑠 ∈ 𝒩 (𝛼) in the CDN to a neighboring variable node 𝛼.

We can now write 𝑇𝑠
(
x𝜏𝛼𝑠

)
as a product of functions owing to the tree structure of the

graph 𝒢, so that

𝑇𝑠
(
x𝜏𝛼𝑠

)
= 𝜙𝑠(𝑥𝛼,x𝒩 (𝑠)∖𝛼)

∏
𝛽∈𝒩 (𝑠)∖𝛼

𝑇𝛽

(
x𝜏𝑠𝛽

)
, (25)
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where x𝜏𝑠𝛽
denotes the vector of configurations for all variables in the subtree 𝜏 𝑠𝛽 which is

rooted at function node 𝑠 and contains node 𝛽 (Figure 18), and 𝑇𝛽 is the product of all
functions in the subtree 𝜏 𝑠𝛽 . Substituting Equation (25) into Equation (24), we obtain

𝜇𝑠→𝛼(x) ≡ 𝜇𝑠→𝛼

(
x𝜏𝛼𝑠

)
= ∂x𝜏𝛼𝑠 ∖𝛼

[
𝜙𝑠(𝑥𝛼,x𝒩 (𝑠)∖𝛼)

∏
𝛽∈𝒩 (𝑠)∖𝛼

𝑇𝛽

(
x𝜏𝑠𝛽

)]
(26)

= ∂x𝒩 (𝑠)∖𝛼

[
𝜙𝑠(𝑥𝛼,x𝒩 (𝑠)∖𝛼)

∏
𝛽∈𝒩 (𝑠)∖𝛼

∂x𝜏𝑠
𝛽
∖𝛽

[
𝑇𝛽

(
x𝜏𝑠𝛽

)]]
(27)

= ∂x𝒩 (𝑠)∖𝛼

[
𝜙𝑠(𝑥𝛼,x𝒩 (𝑠)∖𝛼)

∏
𝛽∈𝒩 (𝑠)∖𝛼

𝜇𝛽→𝑠

(
x𝜏𝑠𝛽

)]
. (28)

Here we have defined messages 𝜇𝛽→𝑠(x) ≡ 𝜇𝛽→𝑠

(
x𝜏𝑠𝛽

)
from variable nodes to function

nodes. Similar to the definition for 𝜇𝑠→𝛼(x), the message 𝜇𝛽→𝑠(x) only depends on variables
in the subtree 𝜏 𝑠𝛽 and corresponds to the higher order derivative of the joint CDF with respect
to variables in the subtree 𝜏 𝑠𝛽 ∖ 𝛽.

Finally, to compute the messages 𝜇𝛽→𝑠(x) from variables to functions, we can write each
of the functions 𝑇𝛽

(
x𝜏𝑠𝛽

)
as a product such that

𝑇𝛽
(
x𝜏𝑠𝛽

)
=

∏
𝑠′∈𝒩 (𝛽)∖𝑠

𝑇𝑠′
(
x
𝜏𝛽
𝑠′

)
, (29)

where 𝑇𝑠′ is defined identically to 𝑇𝑠 above but for function node 𝑠′. Substituting this into
the expression for 𝜇𝛽→𝑠(x) in Equation (28) yields

𝜇𝛽→𝑠(x) = ∂x𝜏𝑠
𝛽
∖𝛽

[
𝑇𝛽
(
x𝜏𝑠𝛽

)]
=

∏
𝑠′∈𝒩 (𝛽)∖𝑠

∂x
𝜏
𝛽
𝑠′ ∖𝛽

[
𝑇𝑠′
(
x
𝜏𝛽
𝑠′

)]
(30)

=
∏

𝑠′∈𝒩 (𝛽)∖𝑠
𝜇𝑠′→𝛽(x). (31)

Thus, to compute messages from variables to functions, we simply take the product of
all incoming messages except for the message coming from the destination function node.
As in the sum-product algorithm, variables with only two neighboring functions simply
pass messages through unchanged. We see here that the process of differentiation in a
CDN can be implemented as an algorithm in which we pass messages 𝜇𝛼→𝑠 from variables
to neighboring function nodes and messages 𝜇𝑠→𝛼 from functions to neighboring variable
nodes. Messages can be computed recursively from one another as described above: we
start from an arbitrary root variable node 𝛼 and propagate messages up from leaf nodes to
the root node. As in the sum-product algorithm, leaf variable nodes 𝛼′ send the message
𝜇𝛼′→𝑠(x) = 1 while leaf function nodes 𝜙𝑠(𝑥𝛼′) send the message 𝜇𝑠→𝛼′(x) = 𝜙𝑠(𝑥𝛼′).

The message-passing algorithm proceeds until messages have been propagated along
every edge in the network and the root variable node has received all incoming messages
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from the remainder of the network. Once all messages have been sent, we can obtain the
probability density of the variables in the graph from differentiating the product of incoming
messages at the root node 𝛼, so that

𝑃 (x) = ∂𝑥𝛼

[ ∏
𝑠∈𝒩 (𝛼)

𝜇𝑠→𝛼(x)

]
.

6.2 Ordinal regression

In many domains, one is faced with the problem of predicting multinomial variables that
can each take one of a finite number of values in some discrete set 𝒳 = {𝑟1, ⋅ ⋅ ⋅ , 𝑟𝐾} for
some integer 𝐾. Such multinomial variables can then be distinguished as being of the type

∙ Nominal, or categorical, so that the set 𝒳 does not admit an ordering of variable
values.

∙ Ordinal, so that the set 𝒳 admits a total ordering over variable values of the type
𝑟1 ≺ ⋅ ⋅ ⋅ ≺ 𝑟𝐾 .

An example of a nominal variable is gender, such as 𝒳 = {𝑀𝑎𝑙𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒} and an example
of an ordinal variable is a grading scheme 𝒳 = {𝐴,𝐵,𝐶,𝐷} so that the possible variable
values satisfy the total ordering 𝐷 ≺ 𝐶 ≺ 𝐵 ≺ 𝐴.

In ordinal regression, the goal is to predict a discrete variable 𝑦 ∈ {𝑟1, ⋅ ⋅ ⋅ , 𝑟𝐾} given
a set of features x, where 𝑟1 ≺ ⋅ ⋅ ⋅ ≺ 𝑟𝐾 are an ordered set of labels. Unlike the general
problem of multiclass classification in which variables to be predicted are nominal, output
labels in the setting of ordinal regression are not permutation-invariant and so any model
for the problem should account for the orderings of the output variable values.

One model for performing ordinal regression is the cumulative model (McCullagh, 1980),
which relates an input vector x to an ordinal output 𝑦 via a function 𝑓 and a set of cutpoints
𝜃(𝑟1) < ⋅ ⋅ ⋅ < 𝜃(𝑟𝐾) along the real line ℝ so that 𝑦 = 𝑟𝑘 if 𝜃(𝑟𝑘−1) < 𝑓(x) + 𝜖 ≤ 𝜃(𝑟𝑘),
where 𝜖 is additive noise and we define 𝜃(𝑟0) = −∞, 𝜃(𝑟𝐾) =∞ (Figure 19). If 𝑃 (𝜖) is the
probability density function from which the noise variable 𝜖 is drawn, then we can write

ℙ
[
𝑦 = 𝑟𝑘

]
= ℙ

[
𝜃(𝑟𝑘−1) < 𝑓(x) + 𝜖 ≤ 𝜃(𝑟𝑘)

]
= ℙ

[{𝜃(𝑟𝑘−1)− 𝑓(x) < 𝜖}
∩
{𝜖 ≤ 𝜃(𝑟𝑘)− 𝑓(x)}

]
= 𝐹𝜖(𝜃(𝑟𝑘−1)− 𝑓(x))− 𝐹𝜖(𝜃(𝑟𝑘)− 𝑓(x)),

where 𝐹𝜖 ≡ 𝐹 (𝜖) is the corresponding cumulative distribution function for 𝑃 (𝜖). The above
equation defines a likelihood function for a given observed pair (x, 𝑦), so that the cutpoints
𝜃(𝑟𝑘) and the regression function 𝑓(x) can subsequently be estimated from training data by
maximizing the likelihood function with respect to the cutpoints 𝜃(𝑟𝑘) and the regression
function 𝑓(x).
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Figure 19: An illustration of the ordinal regression model. A given point has label 𝑦 = 𝑟𝑘 if
𝜃(𝑟𝑘−1) < 𝑓(x) + 𝜖 ≤ 𝜃(𝑟𝑘), where 𝜖 is a noise variable.

6.3 Derivative-sum-product message updates for learning to rank in
multiplayer games

Here we present the DSP algorithm for updating player ranks. Messages are ensured to be
properly normalized locally by computing the constant 𝒵 = lim

𝑧→∞𝜇(𝑧) for each message and

multiplying the message pair 𝜇, 𝜆 by 𝒵−1.

∙ Initialize for each player score node 𝑋𝑘:

𝜇𝑋𝑘→𝑔𝑛(𝑥𝑘) = 𝑠𝑘(𝑥𝑘),

𝜆𝑋𝑘→𝑔𝑛(𝑥𝑘) = ∂𝑥𝑘

[
𝑠𝑘(𝑥𝑘)

]
.

∙ Pass messages from function node 𝑔𝑛 to team performance node 𝑅𝑛 for neighboring
player nodes X𝑛, 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 :

𝜇𝑔𝑛→𝑅𝑛(r,x) =
∑

𝑠,𝑡∣X𝑠∪X𝑡=X𝑛

X𝑠
∩

X𝑡=∅

∂x𝑠

[
𝑔𝑛(x𝑛, 𝑟𝑛)

] ∏
𝑗∣𝑋𝑗∈X𝑠

𝜇𝑋𝑗→𝑔𝑛(𝑥𝑗)
∏

𝑗∣𝑋𝑗∈X𝑡

𝜆𝑋𝑗→𝑔𝑛(𝑥𝑗),

𝜆𝑔𝑛→𝑅𝑛(r,x) =
∑

𝑠,𝑡∣X𝑠∪X𝑡=X𝑛

X𝑠
∩

X𝑡=∅

∂x𝑠,𝑟𝑛

[
𝑔𝑛(x𝑛, 𝑟𝑛)

] ∏
𝑗∣𝑋𝑗∈X𝑠

𝜇𝑋𝑗→𝑔𝑛(𝑥𝑗)
∏

𝑗∣𝑋𝑗∈X𝑡

𝜆𝑋𝑗→𝑔𝑛(𝑥𝑗).

∙ Set 𝜇ℎ𝑛−1,𝑛→𝑅𝑛(r,x) = 𝜆ℎ𝑛−1,𝑛→𝑅𝑛(r,x) = 1 for 𝑛 = 1. Pass messages from team
performance node 𝑅𝑛 to neighboring team performance nodes 𝑅𝑛+1 and function
nodes ℎ𝑛,𝑛+1 for 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 :

𝜇𝑅𝑛→ℎ𝑛,𝑛+1(r,x) = 𝜇ℎ𝑛−1,𝑛→𝑅𝑛(r,x)𝜇𝑔𝑛→𝑅𝑛(r,x),

𝜆𝑅𝑛→ℎ𝑛,𝑛+1(r,x) = 𝜆ℎ𝑛−1,𝑛→𝑅𝑛(r,x)𝜇𝑔𝑛→𝑅𝑛(r,x)

+ 𝜇ℎ𝑛−1,𝑛→𝑅𝑛(r,x)𝜆𝑔𝑛→𝑅𝑛(r,x),

𝜇ℎ𝑛,𝑛+1→𝑅𝑛+1(r,x) = 𝜇𝑅𝑛→ℎ𝑛,𝑛+1(r,x)∂𝑟𝑛

[
ℎ𝑛,𝑛+1(𝑟𝑛, 𝑟𝑛+1)

]
+ 𝜆𝑅𝑛→ℎ𝑛,𝑛+1(r,x)ℎ𝑛,𝑛+1(𝑟𝑛, 𝑟𝑛+1),

𝜆ℎ𝑛,𝑛+1→𝑅𝑛+1(r,x) = 𝜇𝑅𝑛→ℎ𝑛,𝑛+1(r,x)∂𝑟𝑛,𝑟𝑛+1

[
ℎ𝑛,𝑛+1(𝑟𝑛, 𝑟𝑛+1)

]
+ 𝜆𝑅𝑛→ℎ𝑛,𝑛+1(r,x)∂𝑟𝑛+1

[
ℎ𝑛,𝑛+1(𝑟𝑛, 𝑟𝑛+1)

]
.
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∙ Set 𝜇ℎ𝑛,𝑛+1→𝑅𝑛(r,x) = 𝜆ℎ𝑛,𝑛+1→𝑅𝑛(r,x) = 1 for 𝑛 = 𝑁 . Pass messages from team
performance node 𝑅𝑛 to neighboring team performance nodes 𝑅𝑛−1 and function
nodes ℎ𝑛−1,𝑛 for 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 :

𝜇𝑅𝑛→ℎ𝑛−1,𝑛(r,x) = 𝜇ℎ𝑛,𝑛+1→𝑅𝑛(r,x)𝜇𝑔𝑛→𝑅𝑛(r,x),

𝜆𝑅𝑛→ℎ𝑛−1,𝑛(r,x) = 𝜆ℎ𝑛,𝑛+1→𝑅𝑛(r,x)𝜇𝑔𝑛→𝑅𝑛(r,x)

+ 𝜇ℎ𝑛,𝑛+1→𝑅𝑛(r,x)𝜆𝑔𝑛→𝑅𝑛(r,x),

𝜇ℎ𝑛−1,𝑛→𝑅𝑛−1(r,x) = 𝜇𝑅𝑛→ℎ𝑛−1,𝑛(r,x)∂𝑟𝑛

[
ℎ𝑛−1,𝑛(𝑟𝑛−1, 𝑟𝑛)

]
+ 𝜆𝑅𝑛→ℎ𝑛−1,𝑛(r,x)ℎ𝑛−1,𝑛(𝑟𝑛−1, 𝑟𝑛),

𝜆ℎ𝑛−1,𝑛→𝑅𝑛−1(r,x) = 𝜇𝑅𝑛→ℎ𝑛−1,𝑛(r,x)∂𝑟𝑛−1,𝑟𝑛

[
ℎ𝑛−1,𝑛(𝑟𝑛−1, 𝑟𝑛)

]
+ 𝜆𝑅𝑛→ℎ𝑛−1,𝑛(r,x)∂𝑟𝑛−1

[
ℎ𝑛−1,𝑛(𝑟𝑛−1, 𝑟𝑛)

]
.

∙ Pass messages from each team performance node 𝑅𝑛 to neighboring function nodes
𝑔𝑛:

𝜇𝑅𝑛→𝑔𝑛(r,x) = 𝜇ℎ𝑛−1,𝑛→𝑅𝑛(r,x)𝜇ℎ𝑛,𝑛+1→𝑅𝑛(r,x),

𝜆𝑅𝑛→𝑔𝑛(r,x) = 𝜆ℎ𝑛−1,𝑛→𝑅𝑛(r,x)𝜇ℎ𝑛,𝑛+1→𝑅𝑛(r,x)

+ 𝜇ℎ𝑛−1,𝑛→𝑅𝑛(r,x)𝜆ℎ𝑛,𝑛+1→𝑅𝑛(r,x).

∙ Pass messages from function nodes 𝑔𝑛 to neighboring player score nodes 𝑋𝑘:

𝜇𝑔𝑛→𝑋𝑘
(r,x) =

∑
𝑠,𝑡∣X𝑠∪X𝑡=X𝑛∖𝑋𝑘

X𝑠
∩

X𝑡=∅

∏
𝑗∣𝑋𝑗∈X𝑠

𝜇𝑋𝑗→𝑔𝑛(𝑥𝑗)
∏

𝑗∣𝑋𝑗∈X𝑡

𝜆𝑋𝑗→𝑔𝑛(𝑥𝑗)

⋅
(
∂x𝑠

[
𝑔𝑛(x𝑛, 𝑟𝑛)

]
𝜆𝑅𝑛→𝑔𝑛(r,x) + ∂x𝑠,𝑟𝑛

[
𝑔𝑛(x𝑛, 𝑟𝑛)

]
𝜇𝑅𝑛→𝑔𝑛(r,x)

)
,

𝜆𝑔𝑛→𝑋𝑘
(r,x) =

∑
𝑠,𝑡∣X𝑠∪X𝑡=X𝑛∖𝑋𝑘

X𝑠
∩

X𝑡=∅

∏
𝑗∣𝑋𝑗∈X𝑠

𝜇𝑋𝑗→𝑔𝑛(𝑥𝑗)
∏

𝑗∣𝑋𝑗∈X𝑡

𝜆𝑋𝑗→𝑔𝑛(𝑥𝑗)

⋅
(
∂x𝑠,𝑥𝑘

[
𝑔𝑛(x𝑛, 𝑟𝑛)

]
𝜆𝑅𝑛→𝑔𝑛(r,x) + ∂x𝑠,𝑥𝑘,𝑟𝑛

[
𝑔𝑛(x𝑛, 𝑟𝑛)

]
𝜇𝑅𝑛→𝑔𝑛(r,x)

)

∙ For each player score node 𝑋𝑘,

𝜇𝑋𝑘→𝑠𝑘(r,x) = 𝜇𝑔𝑛→𝑋𝑘
(r,x),

𝜆𝑋𝑘→𝑠𝑘(r,x) = 𝜆𝑔𝑛→𝑋𝑘
(r,x).

∙ Update player skill functions 𝑠𝑘(𝑥𝑘) using the multiplicative rule

𝑠𝑘(𝑥𝑘)← 𝑠𝑘(𝑥𝑘)𝜇𝑔𝑛→𝑋𝑘
(x, r).
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