
Cumulative distribution networks:

Inference, estimation and applications of graphical models

for cumulative distribution functions

by

Jim C. Huang

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering

University of Toronto

Copyright c© 2009 by Jim C. Huang

Abstract

Cumulative distribution networks:

Inference, estimation and applications of graphical models for cumulative distribution

functions

Jim C. Huang

Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering

University of Toronto

2009

This thesis presents a class of graphical models for directly representing the joint cumula-

tive distribution function (CDF) of many random variables, called cumulative distribution

networks (CDNs). Unlike graphical models for probability density and mass functions, in

a CDN, the marginal probabilities for any subset of variables are obtained by computing

limits of functions in the model. We will show that the conditional independence prop-

erties in a CDN are distinct from the conditional independence properties of directed,

undirected and factor graph models, but include the conditional independence properties

of bidirected graphical models. As a result, CDNs are a parameterization for bidirected

models that allows us to represent complex statistical dependence relationships between

observable variables. We will provide a method for constructing a factor graph model

with additional latent variables for which graph separation of variables in the correspond-

ing CDN implies conditional independence of the separated variables in both the CDN

and in the factor graph with the latent variables marginalized out. This will then allow

us to construct multivariate extreme value distributions for which both a CDN and a

corresponding factor graph representation exist.

In order to perform inference in such graphs, we describe the ‘derivative-sum-product’

(DSP) message-passing algorithm where messages correspond to derivatives of the joint

ii

cumulative distribution function. We will then apply CDNs to the problem of learning to

rank, or estimating parametric models for ranking, where CDNs provide a natural means

with which to model multivariate probabilities over ordinal variables such as pairwise

preferences. We will show that many previous probability models for rank data, such

as the Bradley-Terry and Plackett-Luce models, can be viewed as particular types of

CDN. Applications of CDNs will be described for the problems of ranking players in

multiplayer team-based games, document retrieval and discovering regulatory sequences

in computational biology using the above methods for inference and estimation of CDNs.

iii

Acknowledgements

I’d first like to acknowledge my advisor Brendan Frey for his guidance, great wisdom

and insights throughout the years. As an advisor, Brendan has provided an excellent

environment for doing research in which I have had the freedom to explore unique re-

search directions and develop as a researcher. I’d like to thank Zoubin Ghahramani,

Frank Kschischang, Quaid Morris and Radford Neal as members of my doctoral thesis

committee for providing valuable feedback that significantly improved the writing of this

thesis. I’d like to thank Ilya Sutskever for his proofreading services, helpful comments

on drafts of the thesis and for many exciting conversations around the globe at various

times. I’d like to also acknowledge Tom Minka, Ricardo Silva and Yee Whye Teh for

insights that have contributed to the writing of this thesis. My thanks go out to Nebojsa

Jojic, Anitha Kannan and John Winn for hosting me during my internships at Microsoft

Research, for providing challenging environments in which to do research and for being

exemplary mentors from whom I have learned much.

I’d like to thank Tomas Babak and Desiree Tillo for discussions and collaborations in

bioinformatics and without whom I would have been woefully unaware of the intriguing

complexities of molecular biology and medicine. I’d like to thank Danilo Silva for highly

insightful discussions on mathematics, music and philosophy and the interplay between

the three. Thanks go out to present and past members of Brendan Frey’s Probabilistic

and Statistical Inference (PSI) group and the University of Toronto Machine Learning

group. Finally, I’d like to thank the members of my former band and my brother Kenneth,

to whom this thesis is dedicated.

iv

Contents

1 Introduction 1

2 Background 5

2.1 Cumulative distribution functions . 5

2.1.1 Joint cumulative distribution functions 5

2.1.2 Conditional cumulative distribution functions 8

2.2 Stochastic orderings of random variables 11

2.3 Copulas . 13

2.4 Graph terminology . 14

2.5 Probabilistic graphical models . 18

2.5.1 Directed graphical models . 21

2.5.2 Undirected graphical models . 23

2.5.3 Factor graph models . 24

2.5.4 Bidirected graphical models . 26

2.6 Conditional independence in graphical models 26

2.6.1 Conditional independence axioms 27

2.6.2 Conditional independence in directed graphical models 28

2.6.3 Conditional independence in undirected graphical models 29

2.6.4 Conditional independence in factor graph models 30

2.6.5 Conditional independence in bidirected graphical models 31

2.7 The sum-product algorithm . 33

v

2.7.1 Inference using sum-product . 39

3 Cumulative distribution networks 41

3.1 The cumulative distribution network: A graphical model for cumulative

distribution functions . 42

3.2 Marginal and conditional independence properties 50

3.3 Cumulative distribution networks as bidirected graphs 57

3.4 Converting a cumulative distribution network to a factor graph 60

3.5 Stochastic orderings in a cumulative distribution network 67

3.6 Discussion . 68

4 The derivative-sum-product algorithm 70

4.1 Differentiation in cumulative distribution networks 71

4.2 Inference in cumulative distribution networks 76

4.3 Derivative-sum-product: A message-passing algorithm for inference

in cumulative distribution networks . 79

4.4 Complexity of inference in cumulative distribution networks

and factor graphs . 82

4.5 Discussion . 85

5 Learning to rank with cumulative distribution networks 88

5.1 Background . 89

5.1.1 Ordinal regression . 89

5.1.2 Nadaraya-Watson estimators . 90

5.1.3 Gradient-based methods for learning 91

5.2 Application: Learning to rank in multiplayer team-based games 94

5.2.1 Previous work . 96

5.2.2 A cumulative distribution network

for modelling multiplayer game outcomes 96

vi

5.2.3 Ranking players in multiplayer games

using the derivative-sum-product algorithm 102

5.2.4 The Halo 2TM Beta dataset . 107

5.2.5 Discussion . 110

5.3 Probability models over partial orderings as cumulative distribution networks112

5.3.1 Transforming order graphs into cumulative distribution networks . 116

5.3.2 Connections to probability models for rank data 118

5.4 Application: Document retrieval . 121

5.4.1 Previous work . 121

5.4.2 Learning to rank documents from queries 122

5.4.3 Performance measures for ranking 125

5.4.4 The OHSUMED dataset . 126

5.4.5 Experimental setup . 127

5.4.6 Discussion . 129

5.5 Application: Regulatory sequence search

in computational systems biology . 131

5.5.1 Previous work . 133

5.5.2 Discovering regulatory sequences as a problem of learning to rank 133

5.5.3 STORMSeq: STructured ranking of

Regulatory Motifs and Sequences 136

5.5.4 Ranking using sequence and quantitative features 137

5.5.5 The RankMotif++ model as a cumulative distribution network . 139

5.5.6 Discovering transcription factor binding profiles 140

5.5.7 Discovering microRNA targets . 144

5.5.8 Discussion . 150

6 Conclusion 154

6.1 Future work . 155

vii

6.1.1 Construction of CDN models . 155

6.1.2 Learning in cumulative distribution networks 156

6.1.3 Derivative-sum-product in graphs with cycles 156

6.1.4 Approximating derivative-sum-product

in continuous variable models . 157

6.1.5 Extending the structured ranking learning framework 157

6.1.6 Constructing mixed graphical models 158

Bibliography 158

viii

List of Tables

2.1 The sum-product algorithm in a factor graph. 37

4.1 The derivative-sum-product (DSP) algorithm for inference in a CDN de-

fined over discrete variables. 86

4.2 The derivative-sum-product (DSP) algorithm for inference in a CDN de-

fined over continuous variables. 87

5.1 The DSP algorithm for updating player ranks. Messages are ensured to

be properly normalized locally by computing the constant Z = lim
z→∞µ(z)

for each message and multiplying the message pair µ, λ by Z−1. 104

5.2 The DSP algorithm for updating player ranks (cont’d). Messages are

ensured to be properly normalized locally by computing the constant

Z = lim
z→∞µ(z) for each message and multiplying the message pair µ, λ

by Z−1. 105

5.3 The DSP algorithm for updating player ranks (cont’d). Messages are

ensured to be properly normalized locally by computing the constant

Z = lim
z→∞µ(z) for each message and multiplying the message pair µ, λ

by Z−1. 106

ix

List of Figures

2.1 Two random variables X, Y satisfy the stochastic ordering X � Y if and

only if FX(t) ≥ FY (t) for all t ∈ ℝ. 13

2.2 Example of a set C (consisting of nodes in red) separating node sets A

and B in an undirected graph. 17

2.3 Example of the set of neighboring nodes s ∈ S N (A) in a bipartite graph

for A ⊆ V . The set A consists of nodes in red and neighboring nodes

s ∈ S enclosed by the dotted curve are in the set N (A). 19

2.4 a) A Bayesian network over five variables X1, X2, X3, X4, X5; b) A Markov

random field; b) A factor graph; d) A bidirected graphical model. 22

2.5 a),b) Y and Z are d-separated by X and so Y ⊥⊥ Z|X; c) Y and Z are

not d-separated by X; d) Y and Z are separated from X by U and so

Y, Z ⊥⊥ X|U ; e) X and Z are separated by U and so X ⊥⊥ Z|U 29

2.6 a) A bidirected graphical model in which graph separation of nodes implies

the marginal independence relationships X1 ⊥⊥ X3, X2 ⊥⊥ X4, X1 ⊥⊥ X4;

b) A possible Bayesian network with latent variables Y1, Y2, Y3 in which

graph separation implies the same marginal independence relationships

X1 ⊥⊥ X3, X2 ⊥⊥ X4, X1 ⊥⊥ X4. 31

2.7 Example of the subtrees ταs , τ
s
β for a tree-structured factor graph G. . . . 34

2.8 Messages in the sum-product algorithm 36

2.9 A toy example of a factor graph over four variables U,X, Y, Z. 36

x

2.10 Flow of messages in the sum-product algorithm applied to Example 2. a)

From leaf variable nodes X,U to the root variable node Z; b) From the

root node Z to the leaf nodes X,U . 39

3.1 A cumulative distribution network (CDN) over three variables and four

functions. 43

3.2 A CDN defined over two variablesX and Y with functionsG1(x, y), G2(x, y).

45

3.3 a) Joint probability density function P (x, y) corresponding to the distri-

bution function F (x, y) using bivariate Gaussian CDFs as CDN functions;

b),c) The PDFs corresponding to ∂x,y

[

G1(x, y)
]

and ∂x,y

[

G2(x, y)
]

. . . . 46

3.4 a) Joint probability density function P (x, y) corresponding to the distri-

bution function F (x, y) using bivariate Gumbel copulas as CDN functions,

with Student’s-t and Gaussian marginal input CDFs; b),c) The PDFs cor-

responding to ∂x,y

[

G1(x, y)
]

and ∂x,y

[

G2(x, y)
]

. 48

3.5 a) Joint probability density function P (x, y) corresponding to the distribu-

tion function F (x, y) using bivariate sigmoidal functions as CDN functions;

b),c) The PDFs corresponding to ∂x,y

[

G1(x, y)
]

and ∂x,y

[

G2(x, y)
]

. . . . 49

3.6 Marginal independence property of CDNs: if two variables X and Y share

no common function nodes, they are marginally independent. 51

3.7 Conditional independence in CDNs. Two variablesX and Y are marginally

independent given the variable Z that separates X from Y with respect

to the graph (top). When an unobserved variable W separates X from Y ,

X, Y are conditionally independent given Z (bottom). 52

xi

3.8 Example of conditional independence due to graph separation in a CDN.

a) Given bipartite graph G = (V, S, E), node set C separates set A from B

(nodes in red) with respect to G. Furthermore, we have for A′, B′ (nodes in

green dotted line) A ⊆ A′, B ⊆ B′, A′∪B′ = V \C and N (A′)∩N (B′) = ∅

as shown. b) Marginalizing out variables corresponding to nodes in C

yields two disjoint subgraphs of G and so A ⊥⊥ B|V \ (A ∪ B ∪ C). 54

3.9 a) A bidirected graph over four variables X1, X2, X3, X4; b) A correspond-

ing CDN. Graph separation of nodes in both graphs imply the marginal

independence relations X1 ⊥⊥ X4, X2 ⊥⊥ X3. 58

3.10 a) A CDN defined over observable variables X1, X2, X3, X4; b) A factor

graph with latent variables Y1, Y2 introduced and factor nodes neighbour-

ing observable variable nodes are set to conditional probabilities condi-

tioned on the latent variables; c) The corresponding directed graphical

model. Any joint probability modeled by any of three graphs satisfies the

marginal independence relations X2 ⊥⊥ X4. 64

4.1 Example of the subtrees ταs , τ
s
β for a tree-structured CDN given by the

graph G. 73

4.2 Flow of messages in the toy example of CDN defined over variablesX, Y, Z, U . 75

4.3 Flow of messages in the toy example CDN of Figure 4.2 with variable U

marginalized out in order to compute the conditional CDF F (y|x, z). . . 77

4.4 a) Computation of the message from a function node s to a variable node

α; b) Computation of the message from a variable node α to a function

node s. 80

4.5 The DSP algorithm for a chain-structured CDN with continuous variables. 81

xii

4.6 Comparative cost of inference in a) a CDN and b) a factor graph using DSP

and sum-product. The DSP algorithm here requires less floating point

operations due to a simplified graphical model for the joint probability over

observable variables (blue nodes), whereas sum-product requires additional

computations due to the introduction of additional latent variables (red

nodes). 83

5.1 An illustration of the ordinal regression model. A given point has label

y = rk if θ(rk−1) < f(x) + ǫ ≤ θ(rk), where ǫ is a noise variable. 90

5.2 Synthetic data generated from an ordinal regression model whereby yn = k

if θ(k − 1) < f(xn) + 2ǫ ≤ θ(k) for k = 1, · · · , 10 and θ(k) = k for

k = 1, · · · , 9 and θ(0) = −∞, θ(10) = ∞, where the function f(x) =

10 sin2(0.8x) + 10 sin(0.1x) and ǫ is a Gaussian random variable with zero

mean and unit variance for n = 100. The Nadaraya-Watson estimator

f̂(x) is shown in blue, with a single bandwidth parameter a selected by

cross-validation using squared loss L(a) =
∑

n(yn − f̂(xn; a))2. The true

function f(x) is shown as the black dotted line. 92

xiii

5.3 The TrueSkillTM factor graph for a particular Halo 2TM game involving

three teams with two players each with the team scores T1 = t1, T2 =

t2, T3 = t3 with t1 < t2 < t3 so that team 3 here achieved the highest total

of player scores. The variables H12, H23 correspond to differences in team

scores which determine the ranking of teams, so that teams n and n+1 are

tied in their rankings if the difference in their team scores is below a thresh-

old parameter. Here, Pt = {1, 2, 3, 4, 5, 6} and Tt = {{1, 2}, {3, 4}, {5, 6}}.

Latent variables correspond to nodes in red and observed variables corre-

spond to nodes in blue. Each player k = 1, 2, 3, 4, 5, 6 is assigned a skill

function that reflects the distribution of that player’s skill level Sk given

past game outcomes. Each player then achieves score Xk in any given

game and team scores Tn, n = 1, 2, 3 are then determined as the sum of

player scores for each team. 97

5.4 Graphical models for the player and team performances in a game of Halo

2TM for three teams with two players each. Latent variables correspond

to nodes in red and observed variables correspond to nodes in blue. Each

player k = 1, 2, 3, 4, 5, 6 achieves score Xk in a match and team perfor-

mances Rn, n = 1, 2, 3 are determined as the sum of player performances

for each team. a) A model for the Halo 2TM game represented as a CDN;

b) The corresponding factor graph for the CDN in a) with latent vari-

able nodes introduced according to the representation theorem; c) The

corresponding directed graphical model. 101

5.5 An example of derivative-sum-product updates for a four-player free-for-all

game, with the derivative of the skill functions before the updates (blue)

and afterwards (red). 108

xiv

5.6 a) Prediction error on the Halo 2TM Beta dataset (computed as the frac-

tion of team predicted incorrectly before each game) for DSP, ELO [14]

and TrueSkillTM [23] methods. Error bars over five runs of DSP are shown.

b) Average runtime per game for “LargeTeams” games using MCMC sam-

pling in the TrueSkillTM factor graph and using the DSP algorithm in

the proposed CDN model. Errorbars are shown for three independent

initializations of each algorithm. 110

5.7 Example of an observation with four nodes α, β, γ, δ with the correspond-

ing order graph. Here, the order graph represents the set of preference

relationships α ≻ β, α ≻ γ, β ≻ γ, β ≻ δ, γ ≻ δ. 114

5.8 Learning the ranking function from training data. The ranking function

ρ maps each node α to ℝ. The goal is to learn ρ such that we correctly

rank the nodes in a new test observation. 115

5.9 Transforming the order graph Gn into a CDN. For each edge e = (α, β)

in the order graph (left), a preference variable παβ is created. All such

random variables can then be connected to one another in a CDN with

different possible connectivities (right), allowing for complex statistical

dependence relationships between preferences. 117

5.10 Corresponding CDNs for the Bradley-Terry and Plackett-Luce probability

models for a complete ordering over four nodes α, β, γ, δ. 119

5.11 a) Average NDCG as a function of truncation level k for the OHSUMED

dataset. NDCG values are averaged for test data over five cross-validation

splits; b) Average precision as a function of truncation level n for test data

averaged over five cross-validation splits. 128

5.12 Mean average precision value for test data for several methods on the

OHSUMED benchmark. 130

xv

5.13 Comparison of the 0-1 loss, hinge loss and log-CDF loss for a single pref-

erence r, where the CDF is modeled as a sigmoid
1

1 + exp(−r) 130

5.14 Feature extraction for nodes in the order graph. Each node α has a corre-

sponding sequence sα and a set of corresponding features that are relevant

to ranking the sequence. For the example shown, the sequence sα may

correspond to the sequence for the entire 3’ untranslated region (3’UTR)

of a gene, so that the feature vector xα include the expression of the gene

carrying the sequence, the abundance of protein produced from the coding

region for the gene carrying the sequence and the expression of a putative

microRNA that targets the sequence. 132

5.15 The STructured ranking of Regulatory Motifs and Sequences (STORM-

Seq) method. Given multiple independent observations conveying various

orderings over sequences and given the observed sequences and input fea-

tures extracted for each observation (e.g.: mRNA, microRNA and protein

measurements, sequence context features), STORMSeq learns a ranking

function such that the probability of generating the observed orderings is

maximized. 136

5.16 a) Out-of-sample precision versus recall using five different methods for the

Cbf1, Ceh-22, Oct-1, Rap1, Zif268 transcription factors studied in [4, 11].

The methods shown are MatrixREDUCE (red), MDScan (cyan), Prego

(green), RankMotif++ (black) and STORMSeq (blue); b) The correspond-

ing curves showing Normalized Discounted Cumulative Gains (NDCG)

versus the truncation level, or the number of top-ranking sequences. Both

a) and b) show that by ranking in a structured learning setting using

STORMSeq, we generally improve predictive accuracy, in terms of preci-

sion, recall and NDCG, with respect to the other unstructured learning

methods shown here. 142

xvi

5.17 Heatmap of the Area Under the precision-recall Curve (AUC) for the five

transcription factors and for the five methods. 143

5.18 Position weight matrices found by the MatrixREDUCE, MDScan, Prego,

RankMotif++ and STORMSeq methods (rows) for each of the five tran-

scription factors Cbf1, Ceh-22, Oct-1, Rap1, Zif268. 144

5.19 Average out-of-sample precision versus recall for different STORMSeq learn-

ing configurations using expression data for mRNAs in response to let-7b

transfection [27]. Curves are shown as the average precision and recall

over five training and test data sets. By incorporating additional sources

of sequence information, sequence context and quantitative profiling fea-

tures, STORMSeq achieves higher accuracy (blue) than using sequence

data alone (green), sequence data combined with quantitative features

without computational predictions as additional data (red), or by using

counts of 7-mers in the 3’UTR sequences (black). 149

5.20 a) Cumulative frequency plots of the ∆∆G scores on the top and bot-

tom 100 targets as ranked by STORMSeq. High-scoring STORMSeq tar-

gets generally have higher target site accessibility and so have a lower

∆∆G value compared to low-scoring targets (P < 10−20, Wilcoxon-Mann-

Whitney); b) Cumulative frequency plots of protein abundances for top

and bottom 100 targets as ranked by STORMSeq. High-scoring STORM-

Seq targets have significantly lower target protein abundance (P = 7.73×

10−4) as a result of microRNA repressive activity. 151

xvii

Notation

Symbol Definition

Basic notation

ℙ Probability measure
ℝ The set of real numbers
ℝ

+ The set of non-negative real numbers
ℝ
N Euclidean vector space of N -dimensional vectors
X Countable discrete state space
| · | Cardinality of a set
δ(·) Dirac delta function
F (x) Cumulative distribution function
P (x) Probability density/mass function

F (x|M) Conditional cumulative distribution function
given event M

P (x|M) Conditional probability density function
given event M

Gaussian(·; m,Σ) Multivariate Gaussian probability density
with mean vector m and covariance matrix Σ

Φ(·; m,Σ) Multivariate Gaussian cumulative distribution function
with mean vector m and covariance matrix Σ

xviii

Symbol Definition

Graphical models

V Discrete set of variable nodes
E Discrete set of edges
S Discrete set of factor/function nodes
G Graph consisting of nodes in V and edge set E
G Bipartite graph consisting of nodes in (V, S)

and edge set E
c, C Clique, set of cliques
α, β Indices for variable nodes in V

(α, β) Directed edge from node α ∈ V to node β ∈ V
A,B,C,D, U Discrete subsets of variable nodes in V

Xα Random variable corresponding to node α ∈ V
XA Vector of random variables Xα ∀ α ∈ A
xα Observed value for random variable Xα
xA Vector of observed values for Xα ∀ α ∈ A

ω(xA),XA ≤ xA Event ∩α∈A{Xα ≤ xα}
Z Normalizing constant
ψc Clique potential function
s Function/factor nodes in S

N (α),N (A) Neighboring function/factor nodes for variable node α,
variable node set A in bipartite graph G

N (s) Neighboring variable nodes for
function/factor node s in bipartite graph G

fs(xs), φs(xs) Specification for function/factors in a bipartite graph G,
with xs ≡ xN (s)

xix

Symbol Definition

ταs Subtree of bipartite graph G rooted at
variable node α ∈ V and

containing function/factor node s ∈ S
τ sα Subtree of bipartite graph G rooted at

function/factor node s ∈ S
containing variable node α ∈ V

Ts(τ
s
α), Tα(τ

α
s) Products of function/factors contained

in the subtrees τ sα and ταs
µs→α(xα), µα→s(xα) Sum-product messages from factor node s

to variable node α and
from variable node α to factor node s

µs→α(x), λs→α(x) Derivative-sum-product messages
from function node s to variable node α

µα→s(x), λα→s(x) Derivative-sum-product messages
from variable node α to function node s

A ⊥⊥ B Marginal independence of variable sets XA and XB
A ⊥⊥ B|C Conditional independence of variable sets XA and XB

given XC
A ⊥⊥ B|ω(xC) Conditional independence of variable sets XA,XB

given event ω(xC)

∂xA

[

·
]

Mixed partial derivative/finite difference with respect to

function arguments xα ∀ α ∈ A
∫ xA

−∞
· duA Integral with respect to function arguments uα,

over the range −∞ ≤ uα ≤ xα ∀ α ∈ A
∫

xA

· duA Integral over the range −∞ < xα <∞, ∀ α ∈ A,

lim
xA→zA

Limit as xα → zα ∀ α ∈ A
g(−∞,y), g(∞,y) lim

x→−∞
g(x,y), lim

x→∞ g(x,y) respectively

xA ≤ yA Vector inequality consisting of
elementwise inequalities xα ≤ yα ∀ α ∈ A

xx

Symbol Definition

Learning to rank

Xα � Xβ Stochastic ordering relationship between
random variable Xβ and Xα

Γt Game t
Pt, Tt Set of players and partition of players into teams for game t
D Set of observations
Dn Observation in D
Gn Order graph for observation Dn
E Set of edges in an order graph
V Set of nodes in an order graph
α, β Nodes in V
α ≺ β Preference of β over α
e, e′ Indices for edges in E , with e = (α, β)
παβ, πe Preference variable for edge e = (α, β)
L Dimension of feature vector space
x Feature vector in ℝ

L

ρ(x; a) Ranking function with parameters a
re Difference ρ(xβ; θ)− ρ(xα; θ)

for edge e = (α, β), α, β ∈ V
L Loss functional
∇θ Gradient operator with respect to parameter vector θ
A Alphabet for sequences

sα, Lα Sequence of length Lα for node α ∈ V, so that sα ∈ ALα
xα Feature vector for node α ∈ V
M Position-specific scoring matrix (PSSM)

xxi

Chapter 1

Introduction

Probabilistic graphical models are widely used for representing statistical dependence

relationships between random variables in problems such as error-correction coding [41],

information retrieval [7, 9, 44, 70] and computational systems biology [25, 26, 27, 28, 29].

A graphical model provides a pictorial means of specifying a joint probability density

function (PDF) of many continuous random variables, the joint probability mass func-

tion (PMF) of many discrete random variables, or a distribution defined over a mixture of

continuous and discrete variables. Each variable in the model corresponds to a node in a

graph and edges between nodes in the graph convey statistical dependence relationships

between the variables in the model. The graphical formalism allows one to ascertain the

conditional independence relationships between random variables in a model by inspect-

ing the corresponding graph, where the separation of nodes in the graph implies a par-

ticular conditional independence relationship between the corresponding variables. For

example, in computational biology, genes that participate in certain biological processes

are likely to share a common set of regulators that control their patterns of expression.

The constraints dictating which genes are regulated by which regulators can be expressed

in the form of a graph with edges linking regulator nodes to regulated gene nodes.

A consequence of representing independence constraints between subsets of variables

1

Chapter 1. Introduction 2

using a graph is that the joint probability factors into a product of functions defined over

subsets of neighboring nodes in the graph. This allows us to decompose a large mul-

tivariate distribution into a product of simpler functions, so that the task of inference

and estimation of such models can also be simplified and efficient algorithms for per-

forming these tasks can be implemented. For any given application, a graphical model

also allows us to simplify the computations required for parameter estimation and infer-

ence for variables in the model. As graphical models have been applied to increasingly

complex problems with larger numbers of variables to be modeled, the computational

complexity required for estimation and inference has also dramatically increased. For

many real-world problems, one must often introduce latent variables into a model in or-

der to explain complex statistical dependence relationships between observable variables

and then marginalize out these latent variables to obtain a model over the observable

variables. There are possibly an infinite number of latent variable models associated

with any given model defined over observable variables, so designing latent variables for

any given application can often present difficulties in terms of model identifiability [10],

which causes problems if one wishes to interpret the parameters in a graphical model.

Finally, performing inference and estimation under such models often requires one to ei-

ther approximate intractable marginalization operations [50] or to sample from the model

using Markov Chain Monte Carlo (MCMC) methods [53]. These issues may hamper the

applicability of graphical models for many real-world problems in the presence of latent

variables, since it may be computationally expensive or challenging to perform exact in-

ference and estimation, in addition to selecting amongst several possible latent variable

models for any given problem.

Another limitation of graphical models is that the joint PDF/PMF itself might not

be appropriate for certain applications. For example, in learning to rank, the cumula-

tive distribution function (CDF) arises naturally as a probability measure over inequality

events of the type {X ≤ x}. The joint CDF lends itself to problems that are easily

Chapter 1. Introduction 3

described in terms of inequality events in which statistical dependence relationships also

exist among events. Examples of this type of problem include web search and document

retrieval [7, 9, 35, 70], predicting ratings for movies [57] or predicting multiplayer game

outcomes with a team structure [23]. In contrast to the canonical problems of classi-

fication or regression, in learning to rank we are required to learn some mapping from

inputs to inter-dependent output variables so that we may wish to model both stochastic

orderings of variable states and statistical dependence relationships between variables.

As a means to address the above issues, in this thesis we present a class of graphical

models called cumulative distribution networks (CDN) in which we represent the joint

CDF of a set of variables. In Chapter 3 we will present the basic properties of CDNs

and show that the rules for ascertaining conditional independence relationships amongst

variables in a CDN are distinct from the rules in directed, undirected and factor graphs

[56, 42, 41]. In contrast to these graphical models, marginalization in CDNs involves

tractable operations such as computing limits and the derivatives of local functions in

the graph. In addition, the global normalization constraint can be enforced locally for

each function in the CDN, unlike the case of Markov random fields. We will show that

the conditional independence properties in a CDN include the conditional independence

properties for bidirected graphs [13, 58, 59], so that CDNs are a parameterization for such

models. We will provide a method for constructing a factor graph corresponding to a

CDN in which we introduce additional latent variables into the factor graph. Under such

a construction, the joint probability modeled by the CDN satisfies the same conditional

independence relationships amongst CDN variables as those of its corresponding factor

graph with the latent variables implicitly marginalized out.

In Chapter 4, we will discuss the problem of performing inference under CDNs. The

principal challenge is to compute the derivatives of the joint CDF. We will describe

a message-passing algorithm for inference in CDNs called the derivative-sum-product

algorithm.

Chapter 1. Introduction 4

In Chapter 5, we will take advantage of the graphical representation for the CDF in

order to apply CDNs to the problem of learning to rank. We will devise a model and

estimation method for multiplayer games where the CDN provides us with a means for

modelling the team-based structure of such games in addition to ordering constraints be-

tween model variables. We will then develop a general framework for structured ranking

learning in which we are given many observations of partial orderings over many objects

to be ranked and we wish to learn a model to rank these objects whilst accounting for

a statistical dependence relationships between preferences. We will then present results

on applications of structured ranking learning to the problems of document retrieval and

regulatory sequence discovery in computational biology [25, 26, 27, 28, 29]. Chapter 6

will present future research directions for estimation, inference and applications of CDNs.

Chapter 2

Background

2.1 Cumulative distribution functions

In this section, we will review the properties of CDFs for real-valued random variables.

Here we will omit some proofs for conciseness and refer the reader to [55] for additional

properties of CDFs and additional proofs.

2.1.1 Joint cumulative distribution functions

Definition 2.1.1. Let X be a set of random variables, denoted individually as Xα. The

joint cumulative distribution function F (x) is defined as the function F : ℝ|X| 7→ [0, 1]

such that

F (x) = ℙ



 ∩Xα∈X

{

Xα ≤ xα
}



 ≡ ℙ

[

X ≤ x
]

(2.1)

for some probability ℙ, where X ≤ x denotes the elementwise inequality between the

vector of random variables X and vector x. Thus the CDF is a probability measure

defined over the intersection of events {Xα ≤ xα}. Alternately, the CDF can be defined

in terms of the joint probability density function (PDF) or probability mass function

5

Chapter 2. Background 6

(PMF) P (x) via

F (x) =
∫ x

−∞
P (u) du, (2.2)

where
∫ x
−∞ · du denotes the multivariate integral with respect to vector u and P (x), if

it exists, satisfies P (x) ≥ 0 ∀ x ∈ ℝ
|X|,
∫

x P (x) dx = 1 and P (x) = ∂x

[

F (x)
]

where

∂x

[

·
]

denotes the higher-order mixed derivative operator ∂x1,··· ,xK

[

·
]

≡ ∂K

∂x1 · · ·∂xK
for

x = [x1 · · · xK] ∈ ℝ
K . □

Our analysis here encompasses both discrete and continuous random variables. In the

discrete case where x ∈ X for some discrete set X ⊂ ℝ
|X|, we can define P (x) = ℙ[X = x]

as a sum of shifted multivariate Dirac delta functions δ(x) with the property that

∫

x
δ(x− x∗)g(x) dx = g(x∗) (2.3)

for any function g : ℝ|X| 7→ ℝ and x∗ ∈ ℝ
|X|. Thus in the discrete case, we can write

P (x) as

P (x) = ℙ[X = x] =
∑

u∈X
puδ(x− u). (2.4)

Theorem 2.1.1. A function F : ℝ|X| 7→ [0, 1] is a CDF for some probability ℙ if and

only if F satisfies the following conditions:

1. The CDF F (x) converges to unity as all of its arguments tend to ∞, or

F (∞) ≡ lim
x→∞F (x) = 1. (2.5)

2. The CDF F (x) converges to 0 as any of its arguments tends to −∞, or

F (−∞,x \ xα) ≡ lim
xα→−∞

F (xα,x \ xα) = 0 ∀Xα ∈ X. (2.6)

3. The CDF F (x) is monotonically non-decreasing, so that

F (x) ≤ F (y) ∀ x ≤ y, x,y ∈ ℝ
|X|. (2.7)

where x ≤ y denotes elementwise inequality of all the elements in vectors x,y.

Chapter 2. Background 7

4. The CDF F (x) is right-continuous, so that

lim
ǫ→0+

F (x + ǫ) ≡ F (x) ∀ x ∈ ℝ
|X|. (2.8)

□

The above conditions can be shown to follow from the Kolmogorov axioms of proba-

bility: for a detailed derivation, we refer the reader to [55].

Proposition 2.1.2. Let F (xA, xβ) be the joint CDF for variables {XA, Xβ}. The joint

probability of the event {XA ≤ xA} ∩ {a < Xβ ≤ b} for any random variable Xβ /∈ XA

and any subset of variables XA ⊂ X is given in terms of F (xA, xβ) as

ℙ

[

{XA ≤ xA} ∩ {a < Xβ ≤ b}
]

= F (xA, b)− F (xA, a). (2.9)

□

Proposition 2.1.3. Let F (xA,xB) be the joint CDF for variables X where XA,XB for

a partition of the set of variables X. The joint probability of the event {XA ≤ xA} is

then given in terms of F (xA,xB) as

F (xA) ≡ ℙ

[

XA ≤ xA

]

= lim
xB→∞

F (xA,xB). (2.10)

□

The above proposition follows directly from the definition of a CDF in which

lim
xB→∞

∩α∈A∪B{Xα ≤ xα} = ∩α∈A{Xα ≤ xα}. (2.11)

Thus, marginal CDFs of the form F (xA) can be computed from the joint CDF by com-

puting limits. Furthermore, the CDF is closed under marginalization, so that F (xA,∞)

satisfies the properties of a CDF.

Chapter 2. Background 8

2.1.2 Conditional cumulative distribution functions

In this thesis we will be making use of the concept of a conditional CDF for some subset

of variables XA conditioned on event M . We formally define the conditional CDF below.

Definition 2.1.2. Let M be an event with ℙ[M] > 0. The conditional CDF F (xA |M)

conditioned on event M is defined as

F (xA |M) ≡ ℙ

[

XA ≤ xA |M
]

=
ℙ

[

{XA ≤ xA} ∩M
]

ℙ

[

M
] . (2.12)

□

We will now find the above conditional CDF for different types of events M . In what

follows, we will use the notation ∂xA

[

·
]

to denote a mixed derivative with respect to

variables xA.

Lemma 2.1.4. Let F (xC) be a marginal CDF obtained from the joint CDF F (x) as

given by Proposition 2.1.3 for some XC ⊆ X. Consider some variable set XA ⊆ X. Let

M = ω(xC) ≡ {XC ≤ xC} for XC ⊂ X. If F (xC) > 0, then F (xA|ω(xC)) ≡ F (xA|XC ≤

xC) =
F (xA,xC)

F (xC)
. □

Lemma 2.1.5. Consider some variable set XA ⊆ X. Let M = {xβ < Xβ ≤ xβ +

ǫ} with ǫ > 0 for some scalar random variable Xβ /∈ XA. If F (xβ) and F (xA, xβ)

are differentiable with respect to xβ so that ∂xβ

[

F (xβ)
]

and ∂xβ

[

F (xA, xβ)
]

exist with

∂xβ

[

F (xβ)
]

> 0, then the conditional CDF F (xA|xβ) ≡ lim
ǫ→0+

F (xA|xβ < Xβ < xβ + ǫ) =

lim
ǫ→0+

ℙ

[

{XA ≤ xA} ∩ {xβ < Xβ ≤ xβ + ǫ}
]

ℙ

[

xβ < Xβ ≤ xβ + ǫ
] is given by

F (xA|xβ) =
∂
xβ

[

F (xA, xβ)
]

∂xβ

[

F (xβ)
] ∝ ∂xβ

[

F (xA, xβ)
]

. (2.13)

Chapter 2. Background 9

Proof. We can write

F (xA|xβ < Xβ ≤ xβ + ǫ) =
ℙ

[

{XA ≤ xA} ∩ {xβ < Xβ ≤ xβ + ǫ}
]

ℙ

[

xβ < Xβ ≤ xβ + ǫ
]

=

1
ǫ
ℙ

[

{XA ≤ xA} ∩ {xβ < Xβ ≤ xβ + ǫ}
]

1
ǫ
ℙ

[

xβ < Xβ ≤ xβ + ǫ
] =

F (xA,xβ+ǫ)−F (xA,xβ)

ǫ
F (xβ+ǫ)−F (xβ)

ǫ

.

(2.14)

Taking limits, and given differentiability of both F (xβ) and F (xA, xβ) with respect to

xβ , the conditional CDF F (xA|xβ) is given by

F (xA|xβ) ≡
limǫ→0+

F (xA,xβ+ǫ)−F (xA,xβ)

ǫ

limǫ→0+
F (xβ+ǫ)−F (xβ)

ǫ

=
∂xβ

[

F (xA, xβ)
]

∂xβ

[

F (xβ)
] ∝ ∂xβ

[

F (xA, xβ)
]

, (2.15)

where the proportionality constant does not depend on xA.

Lemma 2.1.6. Let M = {xC < XC ≤ xC + ǫ} ≡ ∩γ∈C{xγ < Xγ ≤ xγ + ǫ} with

ǫ > 0 for XC ⊂ X and ǫ = [ǫ · · · ǫ]T ∈ ℝ
|XC |. Consider the set of random variables

XA ⊂ X with XC ∩ XA = ∅. If both ∂xC

[

F (xC)
]

and ∂xC

[

F (xA,xC)
]

exist for all xC

with ∂xC

[

F (xC)
]

> 0, then the conditional CDF F (xA|xC) ≡ lim
ǫ→0+

F (xA|xC < XC ≤

xC + ǫ) = lim
ǫ→0+

ℙ

[

{XA ≤ xA} ∩ {xC < XC ≤ xC + ǫ}
]

ℙ

[

xC < XC ≤ xC + ǫ
] is given by

F (xA|xC) =
∂xC

[

F (xA,xC)
]

∂xC

[

F (xC)
] ∝ ∂xC

[

F (xA,xC)
]

, (2.16)

where ∂xC

[

·
]

is a mixed derivative operator with respect to {xγ , γ ∈ C}.

Proof. We can proceed by induction on variable set XC with the base case given by

Lemma 2.1.4. Let XC = XC′ ∪ Xβ with Xβ /∈ XC′ ∪ XA. Let M ′ ≡ M ′(ξ) = {xC′ ≤

XC′ ≤ xC′+ξ} = ∩γ∈C′{xγ < Xγ ≤ xγ+ξ} and M ≡M(ξ, ǫ) = M ′∩{xβ < Xβ ≤ xβ+ǫ}

Chapter 2. Background 10

with ǫ = [ξT ǫ]T. Suppose that ∂xC′

[

F (xC′)
]

> 0 and we have computed

F (xA, xβ|xC′) ≡ lim
ξ→0+

F
(

xA, xβ|M ′(ξ)
)

=
∂xC′

[

F (xA, xβ ,xC′)
]

∂xC′

[

F (xC′)
] (2.17)

and

F (xβ |xC′) ≡ lim
ξ→0+

F
(

xβ |M ′(ξ)
)

=
∂xC′

[

F (xβ,xC′)
]

∂xC′

[

F (xC′)
] . (2.18)

Then we can write

F (xA |M) =
ℙ

[

{XA ≤ xA} ∩ {xβ < Xβ ≤ xβ + ǫ} |M ′
]

ℙ

[

xβ < Xβ ≤ xβ + ǫ |M ′
] =

F (xA,xβ+ǫ|M ′)−F (xA,xβ|M ′)
ǫ

F (xβ+ǫ|M ′)−F (xβ |M ′)
ǫ

.

(2.19)

Thus, since ∂xC

[

F (xC)
]

> 0 by hypothesis, we obtain

F (xA|xC) = lim
ǫ→0+,ξ→0+

F (xA,xβ+ǫ|M ′)−F (xA,xβ |M ′)
ǫ

F (xβ+ǫ|M ′)−F (xβ |M ′)
ǫ

=
lim
ǫ→0+

F (xA, xβ + ǫ|xC′)− F (xA, xβ |xC′)
ǫ

lim
ǫ→0+

F (xβ + ǫ|xC′)− F (xβ |xC′)
ǫ

=
∂xβ ,xC′

[

F (xA, xβ,xC′)
]

∂xβ ,xC′

[

F (xβ,xC′)
] =

∂xC

[

F (xA,xC)
]

∂xC

[

F (xC)
] . (2.20)

Proposition 2.1.7. Let F (xC) and F (xA,xC) be marginal CDFs obtained from the

joint CDF F (x) as given by Proposition 2.1.3. If ∂xC

[

F (xA,xC)
]

and ∂xC

[

F (xC)
]

ex-

ist and are continuous, then computing ∂xC

[

F (xA,xC)
]

, ∂xC

[

F (xC)
]

and F (xA|xC) ∝

∂xC

[

F (xA,xC)
]

is invariant to the order of differentiation. □

The above proposition is a generalization of Schwarz’s theorem to mixed derivatives

of a multivariate function with respect to n > 2 variables.

Chapter 2. Background 11

Lemma 2.1.8. Let F (xC) and F (xA,xC) be marginal CDFs obtained from the joint

CDF F (x) as given by Proposition 2.1.3. If ∂xC

[

F (xC)
]

and ∂xA,xC

[

F (xA,xC)
]

exist for

all xC and xA then ∂xC

[

F (xA,xC)
]

≥ 0 ∀ xC and xA.

Proof. If both ∂xC

[

F (xC)
]

and ∂xA,xC

[

F (xA,xC)
]

exist then they must be the PDFs

P (xC) and P (xA,xC) respectively. We can then write

F (xA,xC) =
∫ xC

−∞

∫ xA

−∞
P (uA,uC) duA · duC (2.21)

so that

∂xC

[

F (xA,xC)
]

= ∂xC





∫ xC

−∞

∫ xA

−∞
P (uA,uC) duA · duC





= ∂xC





∫ xC

−∞

∫ xA

−∞
P (uA|uC)P (uC) duA · duC





= P (xC)
∫ xA

−∞
P (uA|xC) duA

= P (xC)F (xA|xC), (2.22)

where we have made use of the Fundamental Theorem of Calculus. The fact that P (xC)

and F (xA|xC) are both non-negative completes the proof.

Thus the above lemma demonstrates that for a joint CDF, mixed derivatives with

respect to any and all subsets of variables are always non-negative.

2.2 Stochastic orderings of random variables

In many applications, it is useful to define the stochastic ordering of random variables.

Informally, a stochastic ordering relationship X � Y holds between two random variables

X, Y if samples of Y tend to be larger than samples of X. We can formalize this notion

in terms of constraints on the marginal CDFs FX(x) and FY (y). We will define below the

concept of first-order stochastic orderings among random variables, as this is the primary

Chapter 2. Background 12

definition for a stochastic ordering that we will make use of in this thesis. We refer the

reader to [43, 62] for additional definitions of stochastic orderings.

Definition 2.2.1. Consider two scalar random variables X and Y with marginal CDFs

FX(x) and FY (y). Then X and Y are said to satisfy the first-order stochastic ordering

constraint X � Y if FX(t) ≥ FY (t) for all t ∈ ℝ. □

The above definition of stochastic ordering is stronger than the constraint E[X] ≤

E[Y] which is often used and one can show that X � Y implies the former constraint.

Note that the converse is not true: E[X] ≤ E[Y] does not necessarily imply X � Y . For

example, consider two Gaussian random variables X and Y for which E[X] ≤ E[Y] but

V ar[X] ≫ V ar[Y]. An illustration of a pairwise first-order constraint X � Y is shown

in Figure 2.1, where FX(t) ≥ FY (t) for all t ∈ ℝ. The definition of a stochastic ordering

can also be extended to disjoint sets of variables XA and XB.

Definition 2.2.2. Let XA and XB be disjoint sets of variables so that XA = {Xα1 , · · · , XαK}

and XB = {Xβ1, · · · , XβK} for some strictly positive integer K. Let FXA(t) and FXB (t)

be the CDFs of XA and XB. Then XA,XB are said to satisfy the stochastic ordering

relationship XA � XB if

FXA(t) ≥ FXB(t) (2.23)

for all t ∈ ℝ
K . □

Note that in general, it does not follow that if XA � XB, then A is not independent

of B, or A /⊥⊥B. Furthermore, the reverse statement is generally not true. A simple

counter-example in the latter case is two independent Gaussian random variables X and

Y with identical variances and E[X] ≤ E[Y].

In addition to the ability to specify stochastic orderings of variables via CDFs, we

can also construct multivariate CDFs from a set of univariate CDFs. We describe the

corresponding concept of a copula function that allows us to accomplish this in the next

section.

Chapter 2. Background 13

Figure 2.1: Two random variables X,Y satisfy the stochastic ordering X � Y if and only if

FX(t) ≥ FY (t) for all t ∈ ℝ.

2.3 Copulas

Copula functions are often used to model statistical dependence relationships between

random variables as a function of the marginal distributions of these variables. Copulas

allow one to specify a joint cumulative distribution function over variables X1, · · · , XK in

terms of the marginal CDFs F1(x1), · · · , FK(xK) whilst allowing for statistical dependence

relationships between the variables. We will formally define the copula below and present

some of the corresponding properties.

Definition 2.3.1. A copula ζ : [0, 1]K 7→ [0, 1] is a joint cumulative distribution function

whose marginal PDFs are uniform. The copula function ζ(u) = ζ(u1, · · · , uK) must

satisfy

lim
uk→0

ζ(u) = 0 ∀ k = 1, · · · , K

lim
u\uk→1

ζ(u) = uk ∀ k = 1, · · · , K

lim
u→1

ζ(u) = 1. (2.24)

□

The existence of such copula functions for modelling joint CDFs F (x) is established

in Sklar’s theorem [54], which we present below.

Theorem 2.3.1 (Sklar’s theorem). Let F (x) ≡ F (x1, · · · , xK) be a joint CDF over the

Chapter 2. Background 14

variables X ≡ {X1, · · · , XK} with marginal CDFs F1(x1), · · · , FK(xK). Then there exists

a copula function ζ such that

F (x) = ζ
(

F1(x1), · · · , FK(xK)
)

∀ xk ∈ ℝ, k = 1, · · · , K. (2.25)

Conversely, if ζ is a copula function and F1(x1), · · · , FK(xK) are marginal CDFs over the

variables X1, · · · , XK , then F (x) is the joint CDF over variables X with marginals CDFs

given by F1(x1), · · · , FK(xK). Furthermore, if the marginal CDFs F1(x1), · · · , FK(xK)

are continuous, then ζ is unique. □

Thus, Sklar’s theorem allows one to model any joint CDF in terms of its marginals

through the use of a copula function, so that copulas allow one to model a variety of

multivariate CDFs. Note that the definition of a copula does not by itself imply any

particular set of conditional independence relationships among variables. In Chapter 3,

we will make use of the ability of copulas to model CDFs in tandem with the graphical

modelling framework that is the focus of this thesis to construct multivariate cumulative

distributions defined over graphs in which we can introduce additional conditional inde-

pendence relationships amongst variables that are not implied by the definition of the

copula. To this end, we will now establish some terminology and concepts for graphical

models that will prove useful in later chapters.

2.4 Graph terminology

In this section, we will define some terms that will be frequently used throughout the

thesis in the context of graphs.

Definition 2.4.1. A graph is a pair G = (V,E) where V is a finite set of nodes and

E ⊆ V × V is a set of edges consisting of ordered pairs (α, β) of distinct nodes α, β ∈ V .

□

Chapter 2. Background 15

The above definition of a graph does not allow for loops of the form (α, α) nor does

it allow for multiple edges between two nodes α, β. That is, the graphs to be discussed

throughout the thesis are assumed to be simple graphs.

Having defined a graph, we can distinguish between three types of graphs G = (V,E).

If for any distinct α, β ∈ V , (α, β) ∈ E ⇔ (β, α) ∈ E, then G is said to be an undirected

graph, whereas if (α, β) ∈ E ⇒ (β, α) /∈ E, then G is said to be a directed graph. We will

occasionally denote undirected edges (α, β) as α−β and directed edges as α→ β, α← β.

Furthermore, we will also refer to bidirected graphs as graphs that are defined identically

to undirected graphs for the purposes of this thesis, but in which edges in the graph are

exclusively bi-directed and denoted as α ↔ β. Note that a bidirected edge α ↔ β in a

bidirected graph does not correspond to both α→ β and α← β. As we will demonstrate

shortly, although bidirected graphs are defined identically to undirected graphs, they lead

to different semantics in the context of probability models defined on graphs, so that we

distinguish between undirected edges and bidirected edges.

With the above notation in mind, we will now proceed to define various terms for

denoting subsets of nodes and/or edges in a graph.

Definition 2.4.2. Let G = (V,E) be a graph. Then the set of neighbors N (α) of a node

α ∈ V is given by

N (α) = {β ∈ V, β 6= α : (α, β) ∈ E or (β, α) ∈ E}. (2.26)

□

Definition 2.4.3. Let G = (V,E) be a directed graph. The parents of node α ∈ V is

defined with respect to G as

pa(α) = {β ∈ V, β 6= α : (β, α) ∈ E}. (2.27)

□

Chapter 2. Background 16

Definition 2.4.4. Let G = (V,E) be a directed graph. The children of node α ∈ V is

defined with respect to G as

ch(α) = {β ∈ V, β 6= α : (α, β) ∈ E}. (2.28)

□

Definition 2.4.5. Let G = (V,E) be a graph. An undirected path of length n between

two nodes α, β ∈ V is defined as a sequence of distinct vertices γ0, · · · , γn with γ0 = α

and γn = β such that the for i = 1, · · · , n, either (γi−1, γi) ∈ E or (γi, γi−1) ∈ E. □

Definition 2.4.6. A directed path of length n from node α to node β is defined as a

sequence of distinct vertices γ0, · · · , γn with γ0 = α and γn = β such that for i = 1, · · · , n,

(γi−1, γi) ∈ E and (γi, γi−1) /∈ E. □

The above definition for a path specifies that the sequence γ0, · · · , γn does not contain

repeated nodes, so that the paths defined above are in fact called simple paths. In the

sequel we will only make use of the definition for simple paths, unless otherwise specified.

In the case in which the nodes α and β are the same, the path is then called a cycle,

which we now define.

Definition 2.4.7. Let G = (V,E) be a graph. For α ∈ V , an undirected cycle of length

n is defined as an undirected path γ0, · · · , γn with γ0 = α and γn = α. □

Definition 2.4.8. A directed cycle of length n is defined as a directed path γ0, · · · , γn
with γ0 = α and γn = α. □

In the context of directed graphs, a directed graph that does not contain any directed

cycles is said to be a directed acyclic graph (DAG).

Definition 2.4.9. Let G = (V,E) be a directed acyclic graph. The descendants of node

α ∈ V is defined with respect to G as the set of all nodes β ∈ V \ α for which there is a

directed path in G leading from α to β. □

Chapter 2. Background 17

Figure 2.2: Example of a set C (consisting of nodes in red) separating node sets A and B in

an undirected graph.

Definition 2.4.10. Let G = (V,E) be an undirected graph. A clique is a subset C ⊆ V

such that α ∈ C, β ∈ C ⇒ (α, β) ∈ E. □

In other words, the set of nodes in a clique is fully connected. Furthermore, a maximal

clique is a clique such that it is not possible to include any other nodes from the graph

in the set without it ceasing to be a clique.

Definition 2.4.11. Given a graph G = (V,E) and a nonempty subset of nodes C ⊆ V ,

C is said to be a connected set if α ∈ C, β ∈ C implies that there is an undirected path

between α and β, where we allow for C = α. □

Definition 2.4.12. Given a graph G = (V,E) and disjoint subsets of nodes A,B,C ⊆ V ,

C is said to separate A from B with respect to G if all undirected paths from any node

α ∈ A to any node β ∈ B contain a node γ ∈ C. □

The above notion of graph separation is illustrated in Figure 2.2 for disjoint node sets

A,B,C in an undirected graph.

Chapter 2. Background 18

Bipartite graphs

The definitions presented above can also be modified for bipartite graphs in which the set

of nodes consists of two disjoint sets of nodes such that every edge in the graph connects

a node in one set to a node in the other set. We will formally define a bipartite graph

below.

Definition 2.4.13. A bipartite graph G = ((V, S), E) ≡ (V, S, E) is a triplet of sets

V, S, E where V, S are two disjoint sets of nodes and E ⊆ V ×S ∪S×V is a set of edges

that correspond to ordered pairs (α, s) or (s, α) for α ∈ V and s ∈ S. □

In the sequel, a bipartite graph will be assumed to be undirected so that for any

α ∈ V, s ∈ S, (α, s) ∈ E ⇔ (s, α) ∈ E and so any edge in a bipartite graph can be

written s− α, although this is not a strict requirement of the above definition (see [16]).

Since bipartite graphs contains two sets of nodes, we will introduce some additional

notation. Let N (α) and N (s) denote the sets

N (α) = {s ∈ S : (α, s) ∈ E}

N (s) = {α ∈ V : (α, s) ∈ E}.

Furthermore, let N (A) = ∪α∈AN (α). An example of the neighboring set N (A) for a

node set A is given in Figure 2.3.

In a bipartite graph, the definition of separation is identical to that presented above,

so that given a bipartite graph G = (V, S, E) and disjoint subsets of nodes A,B,C ⊆ V ,

C separates A from B with respect to G if and only if all paths from any node α ∈ A to

any node β ∈ B include a node γ ∈ C.

2.5 Probabilistic graphical models

When modelling probabilities over many random variables for real-world applications, it

is often advantageous to augment the analysis using graphs. These provide a simple way

Chapter 2. Background 19

Figure 2.3: Example of the set of neighboring nodes s ∈ S N (A) in a bipartite graph for

A ⊆ V . The set A consists of nodes in red and neighboring nodes s ∈ S enclosed by the dotted

curve are in the set N (A).

to visualize the set of conditional independence relationships amongst many variables and

can be used to design models defined over large numbers of variables. A graph/graphical

model, is said to represent/provide a representation for a joint probability over a set of

random variables if and only if the variables over which the probability is defined satisfy

conditional independence relationships that are implied by separation of nodes in the

graph, where nodes in the graph correspond to variables in the model. Equivalently, a

probability is said to be defined over a graph if and only if the variables over which the

probability is defined satisfy conditional independence relationships that are implied by

separation of nodes in the graph. The graph separation of nodes also implies that the

joint probability factors into a product of functions defined over variables for which the

corresponding nodes are neighbors in the graph.

As a result of allowing one to model conditional independence relationships amongst

variables, graphs also allow one to simplify the computations required for inference in the

model, which requires computing conditional probabilities of the form P (x|y). Examples

of such problems of inference would be “Given a sequence of binary 0/1 symbols, what

is the probability that the next symbol will be a 1?”, or “Given a person’s salary, what

is the probability of his/her voting Republican?”. Such graphical representations also

Chapter 2. Background 20

allow for insights into independence relationships amongst model variables that can be

obtained by inspection of the graph. A probabilistic graphical model accounts for the set of

independence relationships between variables in a corresponding probability distribution.

Each node α ∈ V in the graph corresponds to a random variable Xα. The graph allows

us to visualize independence constraints between subsets of variables in the model, so

that for any particular graph separation criterion, variables that are separated in the

graph with respect to the given criterion also satisfy a particular marginal or conditional

independence constraint. A consequence of this is that the joint probability over all of

the variables can typically be decomposed into a product of functions, each depending

only on a subset of the variables in the model. In such cases, a graph is said to model

(or represent) a probability if the probability factors into a product of functions such

that the variables in the model satisfy independence constraints dictated by separation

of nodes in the graph.

In the following, we review three classes of graphical model that are commonly used

in practice:

1. Directed graphical models, or Bayesian networks, which consist of a directed acyclic

graph and a set of conditional probabilities defined for each variable in the model

given its parents in the directed graph.

2. Undirected graphical models, or Markov random fields, which consist of an undi-

rected graph and a set of potential functions defined over cliques of variables in the

model.

3. Factor graph models, or simply factor graphs, which consist of bipartite graphs

of the form G = (V, S, E) in which factors in the model for the joint probability

correspond to factor nodes s ∈ S in the graph and random variables in the model

correspond to nodes α ∈ V .

In addition to these three classes of graphical model, there are also bidirected graphical

Chapter 2. Background 21

models, which consist of probabilities defined on bidirected graphs. An example of each

of the above types of graphical model for five variables X1, X2, X3, X4, X5 is shown in

Figures 2.4(a), 2.4(b) and 2.4(c).

Before we proceed to describe each of the above types of graphical model, we first

note that the models describe joint probability density functions (PDFs) in the case

of continuous variables, joint probability mass functions (PMFs) in the case of discrete

variables, or hybrid PDFs/PMFs in the case of a mixture of continuous and discrete

random variables. Here we will denote all of these as P (x) and we will by default refer

to P (x) as the probability density function, or simply probability. Also, throughout this

manuscript we will refer to a node α in a graph and the corresponding random variable

Xα interchangeably (similarly for sets of nodes A and the associated random variables

XA).

2.5.1 Directed graphical models

Definition 2.5.1. A directed graphical model, or Bayesian network, consists of both a

directed acyclic graph (DAG) G = (V,E) and a set of conditional probability functions

so that the joint probability P (x) is given by

P (x) =
∏

α∈V
P (xα|xpa(α)), (2.29)

where xpa(α) denotes the configuration of the parent nodes for α. In the case where

pa(α) = ∅, we simply have P (xα|xpa(α)) = P (xα). □

A main feature of the directed graphical model is that the graph allows one to in-

corporate knowledge about causal relationships between variables, so that edges between

a node α and its parents allow us to model the causal influence of the parent variables

on variable Xα through the conditional distribution P (xα|xpa(α)). The directionality of

edges in Bayesian networks equivalently allows one to ascertain conditional independence

relationships by inspecting the graph, so that statistical independence relationships may

Chapter 2. Background 22

(a) (b)

(c) (d)

Figure 2.4: a) A Bayesian network over five variablesX1,X2,X3,X4,X5; b) A Markov random

field; b) A factor graph; d) A bidirected graphical model.

exist only between certain subsets of variables in the model. Thus the Bayesian net-

work allows us to model a more complex joint density as a product of local conditional

probabilities that each depend on only some subset of the variables. To illustrate such a

graphical model, consider the following example.

Example 2.5.1. For the Bayesian network shown in Figure 2.4(a), the joint probability

over the variables X1, X2, X3, X4, X5 is given by

P (x1, x2, x3, x4, x5) = P (x1|x2, x3)P (x3|x4, x5)P (x2)P (x4)P (x5). (2.30)

□

Chapter 2. Background 23

2.5.2 Undirected graphical models

Definition 2.5.2. An undirected graphical model, or Markov random field, consists of an

undirected graph G = (V,E) and a set of clique potential functions ψc(xc) ≥ 0 for c in

the set of maximal cliques C of the graph G so that the joint probability P (x) is given

by

P (x) =
1

Z
∏

c∈C
ψc(xc), (2.31)

where the normalization constant Z =
∑

x

∏

c∈C
ψc(xc) ensures that P (x) sums to unity.

When variables are continuous, we replace the above summation operator by an integra-

tion operator. □

Note that the potential functions ψc are not required to directly correspond to marginal

or conditional probabilities. This is in contrast to Bayesian networks, where each func-

tion in the expression for the joint probability corresponds to the conditional probability

of a variable given its parent variables. However, in special cases such as when the

Markov random field is constructed by starting with a Bayesian network, the potential

functions may indeed have such an interpretation. One consequence of the generality of

the potential functions ψc(xc) is that their product will in general not sum or integrate

to unity, so that we require an explicit normalization factor given by Z−1. To illustrate a

simple Markov random field over five variables X1, X2, X3, X4, X5, consider the following

example.

Example 2.5.2. The Markov random field shown in Figure 2.4(b) models the joint

probability

P (x1, x2, x3, x4, x5) =
1

Zψ1(x1, x2, x3)ψ2(x3, x4, x5), (2.32)

where Z =
∑

x1,x2,x3,x4,x5

ψ1(x1, x2, x3)ψ2(x3, x4, x5). □

Chapter 2. Background 24

It is worth noting that if the potentials ψc are allowed to be negative, then the joint

probability P (x) does not necessarily factor into a product form as given in (2.31) (see

[42, 51] for an example).

2.5.3 Factor graph models

Definition 2.5.3. A factor graph model, or simply factor graph, consists of a bipartite

graph G = (V, S, E), where V denotes a set of nodes corresponding to variables and

S denotes nodes corresponding to factors in the model for the joint probability, with

edges in E connecting factor nodes in S to variable nodes in V . The factor graph also

includes a specification of the factors, or functions fs(xs) for each factor node s ∈ S,

where xs ≡ xN (s) and fs : ℝ|N (s)| 7→ ℝ
+. Given graph G and factors fs(xs), the joint

probability P (x) is then given as the product

P (x) =
∏

s∈S
fs(xs). (2.33)

□

In a factor graph, there is a node α ∈ V for every variable in the joint probability

and additional nodes s ∈ S (depicted by squares) for each factor fs(xs) in the model for

the joint probability P (x).

Example 2.5.3. The factor graph shown in Figure 2.4(c) corresponds to the joint prob-

ability

P (x1, x2, x3, x4, x5) = f1(x5)f2(x4)f3(x3, x4, x5)f4(x2)f5(x1, x2, x3)f6(x3). (2.34)

□

Factor graphs make the factorization of the joint probability over variables explicit.

In a factor graph, one can have multiple functions defined over the same sets of variables

and functions need not be defined over maximal cliques in the factor graph, whereas in

Chapter 2. Background 25

a Markov random field one must combine these functions together into a single potential

defined over a clique of variable nodes in the graph. Similarly, the factors in a factor

graph can provide an explicit factorization for a joint probability that would not be

explicit in an Bayesian network.

To convert between graphical models, if we are given a probability model that is

expressed in terms of an undirected graph, then we can readily convert it to a factor

graph by creating variable nodes in the factor graph corresponding to the nodes in the

original undirected graph and additional factor nodes for each of the maximal cliques

in the undirected graph, so that the factors fs(xs) are set to the clique potentials ψc of

the corresponding Markov random field. Note that there may be several different factor

graphs that correspond to the same Markov random field in terms of the set of conditional

independence properties being modelled. From (2.31), we see that Markov random fields

are a special case of factor graphs in which the factors correspond to potential functions

over the maximal cliques, where the normalizing constant Z−1 can be viewed as a factor

defined over the empty set of variables.

We can also show that Bayesian networks, whose corresponding factorization is de-

fined by (2.29), represent special cases of factor graphs in which the factors fs(xs) corre-

spond to conditional probabilities. To convert a Bayesian network to a factor graph, we

first create variable nodes in the factor graph corresponding to the nodes of the directed

graph, factor nodes corresponding to the conditional probabilities in the model and edges

connecting factor nodes to their arguments. In addition, edges in the factor graph may

be directed [16] in order to indicate conditional probabilities in the model. Again, there

can be multiple factor graphs that can correspond to the same Bayesian network in terms

of the set of conditional independence properties being modelled.

Chapter 2. Background 26

2.5.4 Bidirected graphical models

In addition to Bayesian networks, Markov random fields and factor graphs, there are

also bidirected graphical models [13, 58, 59, 69] in which edges connecting nodes in the

graph are bidirected of the form α ↔ β. Unlike the semantics of directed/undirected

edges in Bayesian networks and Markov random fields, bidirected edges allow one to

enforce marginal independence constraints between variables in the model, so that the

lack of an edge α ↔ β between two nodes α, β ∈ V in a bidirected graph imply dif-

ferent conditional independence relationships compared to the absence of an edge in an

undirected/directed graphical model. An example of such a graph for a model with five

variables X1, X2, X3, X4, X5 is shown in Figure 2.4(d). As in the case of Bayesian net-

works, Markov random fields and factor graph models for probability densities, the joint

probability density modeled by a bidirected graphical model factors into a product of

local probabilities defined over connected subsets of variable nodes in the graph [13, 59].

Examples of bidirected graphical models are covariance graphs [37], binary models for

marginal independence [13] and latent variable mixture models [63] that are constructed

as Bayesian networks with latent variables. In a bidirected graphical model, the con-

ditional independence properties are distinct from those of Bayesian networks, Markov

random fields and factor graphs, as we will demonstrate below.

2.6 Conditional independence in graphical models

Conditional independence properties play an important role in using probabilistic models

by simplifying both the probability model and the computations needed to perform in-

ference and learning under that model. If we are given the joint probability over a set of

variables, then in principle we could test whether any potential conditional independence

relationship holds by repeated application of the sum and product rules of probability.

More precisely, we could assess whether for any disjoint subsets of variables XA, XB and

Chapter 2. Background 27

XC we would have P (xA,xB|xC) = P (xA|xC)P (xB|xC) so that XA is independent of

XB given XC . In practice, such an approach would be very time consuming for an arbi-

trary joint probability as this would require us to marginalize over many variables in the

model in order to compute the quantities in the above expression. One important feature

of graphical models is that conditional independence relationships satisfied by the joint

probability can be read directly from the graph without having to perform any analyti-

cal manipulations. It is worth emphasizing here that one can only ascertain conditional

independence relationships due to graph separation in a graphical model: one cannot

ascertain conditional dependence between variables due to lack of graph separation. For

example, consider the simple graphical models α → β, α− β and α −■− β. Although

clearly α and β are not separated in all three graphs, we can set P (xβ|xα) = g(xβ) in the

first model, f(xα, xβ) = ψ(xα, xβ) = g(xβ)h(xα) in the second and third models so that

Xα is marginally independent of Xβ in all three models. Thus with the above example

is mind, we will now describe these properties for each of the above types of graphi-

cal model: a more complete derivation of these and relevant theorems can be found in

[16, 42, 56].

2.6.1 Conditional independence axioms

Suppose we wish to ascertain whether a particular conditional independence statement is

implied by a given graph, so that for any disjoint variable sets XA,XB and XC , any joint

probability defined over the graph satisfies P (xA,xB | xC) = P (xA | xC)P (xB | xC) and

so XA is conditionally independent of XB given XC. We will use the notation of [12] to

denote the above conditional independence relationship as A ⊥⊥ B | C for the context of

graphical models in which variable sets XA,XB,XC correspond to node sets A,B,C in

the graphical model. The ternary relation A ⊥⊥ B | C then satisfies the following axioms:

• If A ⊥⊥ B | C then B ⊥⊥ A | C

Chapter 2. Background 28

• If A ⊥⊥ B | C and U ⊂ B, then A ⊥⊥ U | C

• If A ⊥⊥ B | C and U ⊂ B, then A ⊥⊥ B | (C ∪ U)

• If A ⊥⊥ B | C and A ⊥⊥ U | (C ∪ B), then A ⊥⊥ (B ∪ U) | C

The above axioms correspond to the semi-graphoid axioms [42, 47, 56], which encapsulate

the formal properties of the notion of mutual irrelevance or separation of sets. With

the above axioms in mind, we will now present the resulting conditional independence

relationships which can be obtained by inspecting the graph for various graphical models.

2.6.2 Conditional independence in directed graphical models

Consider disjoint sets of nodes A,B,C ⊆ V in a directed acyclic graph G = (V,E). In

the case of Bayesian networks, A and B are conditionally independent given C if all

undirected paths between nodes in A and B are blocked by C [56].

Definition 2.6.1. Let A,B,C ⊆ V be disjoint subsets of nodes in the graph G = (V,E).

An undirected path from node α ∈ A to node β ∈ B in a directed acyclic graph is said

to be blocked by node set C if the path contains a node γ such that either:

• γ ∈ C is on the path and arrows in the path do not meet head-to-head at γ, or

• γ ∈ V \ C is on the path, γ has no descendants in C and arrows on the path meet

head-to-head at γ.

□

Node sets A and B are then said to be d-separated by C with respect to G if all paths

from any node α ∈ A to any node β ∈ B are blocked by node set C [56]. An example

for each of the above rules for blocked paths in a Bayesian network are shown in Figures

2.5(a), 2.5(b) and 2.5(c).

Chapter 2. Background 29

(a) (b) (c)

(d) (e)

Figure 2.5: a),b) Y and Z are d-separated by X and so Y ⊥⊥ Z|X; c) Y and Z are not

d-separated by X; d) Y and Z are separated from X by U and so Y,Z ⊥⊥ X|U ; e) X and Z are

separated by U and so X ⊥⊥ Z|U .

2.6.3 Conditional independence in undirected graphical models

The conditional independence relationships satisfied by Markov random fields are more

straightforward than those of Bayesian networks due to the absence of directed edges,

although this implies that it is more difficult to represent marginal independence rela-

tionships between variables in a Markov random field. For a Markov random field, the

corresponding probability P (x) obeys the Markov property, which we present below.

Proposition 2.6.1 (Markov property). Let G = (V,E) be an undirected graph and let

A,B,C ⊆ V be disjoint sets of nodes in G. If C separates A from B relative to graph

Chapter 2. Background 30

G, then A ⊥⊥ B|C holds for any joint probability defined over G. □

It can be shown that the Markov property and the factorization of the joint probability

into clique potentials are equivalent. This is formalized by the Hammersley-Clifford

theorem, which we present below.

Theorem 2.6.2 (Hammersley and Clifford). Given an undirected graph G = (V,E), a

probability distribution P (x) satisfies the Markov property if and only if P (x) can be

modeled as P (x) =
∏

c∈C
ψc(xc) where C is the set of maximal cliques in the graph G and

ψc(xc) ≥ 0 are potential functions defined over the random variables corresponding to

the nodes in clique c. □

The Hammersley-Clifford theorem establishes the equivalence between the above

Markov property and the factorization of the joint probability P (x) into clique potentials

ψc(xc) under the assumption of non-negativity of the potentials ψc [42, 51]. A detailed

proof of the Hammersley-Clifford theorem can be found in [42]. An example of the

Markov property is shown for a simple undirected graph in Figure 2.5(d).

2.6.4 Conditional independence in factor graph models

We have shown that both Bayesian networks and Markov random fields can be converted

to factor graphs. Although for any given joint probability, one can have multiple cor-

responding factor graphs, one can nevertheless inspect the factor graph for separation

of sets of nodes to assess conditional independence between two set of variables. More

precisely, let A,B,C ⊆ V be disjoint subsets of variable nodes in the factor graph G.

Then the separation of A from B by C with respect to G implies A ⊥⊥ B|C in the factor

graph. An example of such separation is given in Figure 2.5(e).

It can also be shown that all of the conditional independence properties of Bayesian

networks can also be represented using directed factor graphs [16] by including directed

edges and allowing factors to correspond to conditional distributions of variables given

Chapter 2. Background 31

their parents. In general, all conditional independence relationships that are implied

by graph separation in Bayesian networks and Markov random fields can be modeled

using directed factor graphs. However, there also exist models for which the set of

conditional independence relationships can be modeled by a factor graph but not by

Bayesian networks or Markov random fields [16].

2.6.5 Conditional independence in bidirected graphical models

(a) (b)

Figure 2.6: a) A bidirected graphical model in which graph separation of nodes implies the

marginal independence relationships X1 ⊥⊥ X3,X2 ⊥⊥ X4,X1 ⊥⊥ X4; b) A possible Bayesian

network with latent variables Y1, Y2, Y3 in which graph separation implies the same marginal

independence relationships X1 ⊥⊥ X3,X2 ⊥⊥ X4,X1 ⊥⊥ X4.

In a bidirected graphical model in which the joint probability density is defined over

a bidirected graph G = (V,E), the absence of an edge (α, β) in E implies the marginal

independence relationship α ⊥⊥ β. The conditional independence properties of bidi-

rected graphical models are then distinct from the conditional independence properties

of Bayesian networks, Markov random fields and factor graphs. The independence prop-

erty for bidirected graphical models corresponds to the dual Markov property of [37],

which we present below.

Theorem 2.6.3 (Dual Markov property). Let A,B,C ⊆ V be three disjoint node sets.

If V \ (A∪B ∪C) separates A from B with respect to the bidirected graph G = (V,E).

Then A ⊥⊥ B|C. □

Chapter 2. Background 32

The above set of conditional independence relationships in a bidirected graphical

model can also be obtained from a Bayesian network defined over the variable nodes in

V , with additional latent variables introduced such that for any bidirected edge α ↔ β

in the bidirected graphical model, we introduce a latent variable node γ and directed

edges α ← γ → β in the Bayesian network (Figures 2.6(a),2.6(b)). The dual Markov

property is then satisfied by any probability obtained from marginalizing out the latent

variables in the directed graphical model. Bidirected graphical models can be viewed as a

particular case of mixed graphical models, or ancestral graphical models [58], which consist

of probabilities defined over graphs G = (V,E) containing a mixture of undirected edges

α − β, directed edges α → β and bidirected edges α ↔ β. For any disjoint subsets of

variable nodes A,B,C ⊆ V in a mixed graph, the conditional independence relationship

A ⊥⊥ B|C holds if A and B are m-separated by C with respect to G. The notion

of m-separation is a generalization of the notion of d-separation for mixed graphs in

which we account for the presence of different types of edges in the mixed graph [58].

Thus, bidirected graphs correspond to mixed graphs that contain only bidirected edges

and for which the conditional independence property corresponds to the independence

property for a mixed graph containing only bidirected edges. It is worth contrasting the

conditional independence properties of bidirected graphical models with those of Markov

random fields: in a Markov random field, the absence of an edge between two nodes

α, β ∈ V implies that α ⊥⊥ β|V \ (α ∪ β) due to the Markov property, but the marginal

independence relationship α ⊥⊥ β is not implied by the absence of the edge α − β. In

contrast, in a bidirected graph the absence of an edge α ↔ β implies that α ⊥⊥ β, but

the conditional independence relationship α ⊥⊥ β|V \ (α ∪ β) is not implied. In Chapter

3 we will re-visit such graphs in more detail, as they are fundamentally connected to the

class of graphical models that are the focus of this thesis.

Chapter 2. Background 33

2.7 The sum-product algorithm

In a graphical model, we often wish to compute quantities of the form P (xA) or P (xA |

xB), so that we must solve the problem of marginalizing over variables in the model

by computing quantities of the form
∑

xV \A

P (x). We will now discuss the problem of

marginalization in graphical models, where we wish to compute the marginal probabilities

for variables in the graph of the form P (xA) for some subset of variable nodes A in

the graph. Here we will review the sum-product algorithm [5, 18, 41] for performing

marginalization over variables in the factor graph model.

To begin, let G = (V, S, E) be a tree-structured bipartite graph and suppose we wish

to compute the marginal P (xα) for some variable Xα. We note that we can root the

graph at some node α and we can write the joint probability as

P (x) =
∏

s∈S
fs(xs) =

∏

s∈N (α)

Ts
(

xταs

)

, (2.35)

where xταs denotes the vector of configurations for all variables in the subtree ταs rooted

at variable node α and containing only one factor node neighboring α, namely s (Figure

2.7), and Ts
(

xταs

)

corresponds to the product of all factors located in the subtree ταs .

The marginal probability P (xα) for the root node α is then given by

P (xα) =
∑

xV \α

P (x) =
∑

xV \α





∏

s∈N (α)

Ts
(

xταs

)



. (2.36)

We can take advantage of the fact that the graph has a tree structure and hence the node

sets ταs and ταs′ are disjoint, so that

∑

xV \α





∏

s∈N (α)

Ts
(

xταs

)



 =
∏

s∈N (α)

∑

xταs \α

Ts
(

xταs

)

=
∏

s∈N (α)

µs→α(xα). (2.37)

We have introduced the set of functions µs→α(xα) defined by

µs→α(xα) =
∑

xταs \α

Ts
(

xταs

)

. (2.38)

We can view the function µs→α(xα) as a message being passed from factor node s ∈ N (α)

in the factor graph to a neighboring variable node α.

Chapter 2. Background 34

Figure 2.7: Example of the subtrees ταs , τ
s
β for a tree-structured factor graph G.

We can now write Ts
(

xταs

)

as a product of factors owing to the tree structure of the

graph G, so that

Ts
(

xταs

)

= fs(xα,xN (s)\α)
∏

β∈N (s)\α
Tβ

(

xτs
β

)

, (2.39)

where xτs
β

denotes the vector of configurations for all variables in the subtree τ sβ that

is rooted at factor node s and contains only one neighbor of s, namely β (Figure 2.7),

and Tβ is the product of all factors in the subtree τ sβ . Substituting Equation (2.39) into

Equation (2.38), we obtain

µs→α
(

xα
)

=
∑

xταs \α



fs(xα,xN (s)\α)
∏

β∈N (s)\α
Tβ

(

xτs
β

)



 (2.40)

=
∑

xN (s)\α



fs(xα,xN (s)\α)
∏

β∈N (s)\α

∑

xτs
β
\β

Tβ

(

xτs
β

)



 (2.41)

=
∑

xN (s)\α



fs(xα,xN (s)\α)
∏

β∈N (s)\α
µβ→s(xβ)



, (2.42)

Chapter 2. Background 35

where we have defined the message µβ→s(xβ) sent from variable node β to factor node s.

Finally, to compute the messages µβ→s(xβ) from variable nodes to factor nodes, we

can write each of the functions Tβ
(

xτs
β

)

as a product such that

Tβ
(

xτs
β

)

=
∏

s′∈N (β)\s
Ts′
(

xτβ
s′

)

, (2.43)

where Ts′ is defined identically to Ts above but for factor node s′. Substituting this into

the expression for µβ→s(xβ) in Equation (2.42) yields

µβ→s(xβ) =
∑

xτs
β
\β

Tβ
(

xτs
β

)

=
∏

s′∈N (β)\s

∑

x
τ
β

s′
\β

Ts′
(

xτβ
s′

)

(2.44)

=
∏

s′∈N (β)\s
µs′→β(xβ). (2.45)

Thus, to compute messages from variable nodes to factor nodes, we simply take the

product of all incoming messages except for the message incoming from the destination

factor node. Note that variables with only two neighboring factors simply pass messages

through, unchanged. Messages can be computed recursively from one another: given an

arbitrary root variable node α, we propagate messages up from leaf nodes to the root

node. Here, leaf variable nodes α′ send the message µα′→s(xα′) = 1 while leaf factor

nodes φs(xα′) send the message µs→α′(xα′) = φs(xα′). By then multiplying together the

messages incoming into variable node α once all messages have been passed, we can then

obtain the marginal distribution P (xα) by computing

P (xα) =
∏

s∈N (α)

µs→α(xα). (2.46)

We can thus efficiently compute the marginal probabilities for any node α in the factor

graph by applying the above message-passing algorithm to the factor graph rooted at α.

However, there is an even more efficient method to compute all marginal probabilities of

the form P (xα) in a tree-structured graph G. We can choose an arbitrary root node α

Chapter 2. Background 36

and we can then pass messages from leaf nodes to α, and then from α back to the leaf

nodes. By passing messages in this fashion, we compute the marginal probability for all

variable nodes by multiplying all incoming messages for each node as in Equation (2.46).

The sum-product algorithm is summarized in Table 2.1: to illustrate the algorithm, we

will apply it to a simply toy example.

Figure 2.8: Messages in the sum-product algorithm

Figure 2.9: A toy example of a factor graph over four variables U,X, Y,Z.

Example 2.7.1. Consider a simple toy example of a factor graph over four random

variables U,X, Y, Z. The corresponding factor graph is shown in Figure 2.9 whose joint

probability mass function is given by

P (u, x, y, z) = g(u, x, y)h(y, z). (2.50)

Let Z be the root node so that X and U are leaf nodes. Then the messages from leaves

Chapter 2. Background 37

• For leaf variable nodes α, propagate µα→s(xα) = 1. For leaf factor nodes s, propa-

gate µs→α(xα) = fs(xα).

• (Messages from variables to factors) For each non-leaf variable α and neighboring

factors s ∈ N (α), propagate

µα→s(xα) =
∏

s′∈N (α)\s
µs′→α(xα) (2.47)

• (Messages from factors to variables) For each non-leaf factor node s and neighboring

variables α ∈ N (s),

µs→α(xα) =
∑

xN (s)\α

fs(xs)
∏

β∈N (s)\α
µβ→s(xβ) (2.48)

• Pass messages from root to leaf nodes according to above

• For each node α ∈ V , compute the marginal P (xα) as

P (xα) ∝
∏

s∈N (α)

µs→α(xα) (2.49)

Table 2.1: The sum-product algorithm in a factor graph.

to root are given by

µX→g(x) = 1

µX→g(u) = 1

µg→Y (y) =
∑

u,x

(

g(u, x, y)µX→g(x)µU→g(u)
)

µY→h(y) = µg→Y (y)

µh→Z(z) =
∑

y

(

h(y, z)µY→h(y)
)

.

Figure 2.10(a) shows the flow of the above messages. Once we have propagated from

Chapter 2. Background 38

leaves to root, the messages from root to leaf are given by

µZ→h(z) = 1

µh→Y (y) =
∑

z

h(y, z)

µY→g(y) = µh→Y (z)

µg→U(u) =
∑

x,y

(

g(u, x, y)µX→g(x)µY→g(y)
)

µg→X(x) =
∑

u,y

(

g(u, x, y)µU→g(u)µY→g(y)
)

. (2.51)

The flow of messages from root to leaf are shown in Figure 2.10(b). Once we have

propagated messages in each direction along each edge, we can evaluate the marginal

distributions for each variable. For example, we can verify that the marginal probability

P (z) is computed correctly by multiplying all incoming messages to the node for variable

Z:

P (z) = µh→Z(z) =
∑

y

(

h(y, z)µY→h(y)
)

=
∑

y



h(y, z)
∑

u,x

(

g(u, x, y)µX→g(x)µU→g(u)
)





=
∑

y



h(y, z)
∑

u,x

(

g(u, x, y)
)





=
∑

u,x,y

(

h(y, z)g(u, x, y)
)

=
∑

u,x,y

P (u, x, y, z). (2.52)

The above example illustrates that we can take advantage of the factor graph model

for a joint probability to reduce the number of computations needed to compute the

marginals. If the graph is a tree, then the sum-product algorithm is guaranteed to yield

the exact marginals [18, 41]. However, if one applies the set of message updates in

the sum-product algorithm for graphs with cycles, the algorithm is not guaranteed to

converge to the exact marginals. In spite of this, the sum-product algorithm has been

applied to many problems involving graphs with cycles where one passes messages over

many iterations: this is often referred to as loopy belief propagation and has been shown

Chapter 2. Background 39

(a) (b)

Figure 2.10: Flow of messages in the sum-product algorithm applied to Example 2. a) From

leaf variable nodes X,U to the root variable node Z; b) From the root node Z to the leaf nodes

X,U .

to converge and provide good approximations to marginal probabilities [41, 68] in a wide

variety of applications such as error-correction decoding [19], random satisfiability [49]

and clustering and facility location [17].

2.7.1 Inference using sum-product

The sum-product algorithm can be also be used for the problem of inference in which

we seek to compute probability distributions of the type P (xA|xB). If we condition on

observing variables XB in the factor graph, then we need to marginalize over variable

nodes in V \ A ∪B using the sum-product algorithm. Since

P (xA|xB) ≡ P (xA,xB)

P (xB)
=

∑

xV \(A∪B)
P (xA,xB,xV \(A∪B))

∑

xV \{B}
P (xB,xV \B)

∝
∑

xV \(A∪B)

P (xA,xB,xV \(A∪B)), (2.53)

we can use the sum-product algorithm to compute the above summation (up to a scaling

constant) with variables XB fixed to xB. The scaling constant in the above expression

for P (xA|xB) corresponds to the summation
∑

xV \{B}
P (xB,xV \B) and can be obtained

from the messages used to compute the sum
∑

xV \(A∪B)
P (xA,xB,xV \(A∪B)). Thus, the

sum-product algorithm can be used to compute any conditional distribution of the above

form by marginalizing over all unobserved variables in the factor graph save for those

variables for which we wish to perform inference. For any variable Xα that is observed

Chapter 2. Background 40

with value x∗α we can modify messages µα→s(xα) so as to constrain the variables Xα to

values x∗α. This yields

µα→s(xα) = δ(xα − x∗α)
∏

s′ 6=s
µs′→α(xα). (2.54)

In Chapter 4 we will describe a similar message-passing algorithm called derivative-sum-

product (DSP) for inference in which the quantities of interest correspond to derivatives

of a joint CDF defined over a bipartite graph, so that the marginalization operation in

the sum-product algorithm is replaced by differentiation.

Chapter 3

Cumulative distribution networks

As we have seen earlier, graphical models allow us to simplify the computations required

for obtaining conditional probabilities of the form P (xA|xB) or P (xA) by allowing us to

account for conditional independence constraints in terms of graph separation constraints.

Graphical modelling frameworks such as directed, undirected and factor graphs are there-

fore amenable to efficiently computing a conditional or marginal probability of the above

form. However, for many applications it may be desirable to compute other conditional

and marginal probabilities such as probabilities defined over events of the type {X ≤ x}.

Here we will present the cumulative distribution network (CDN), which is a graphi-

cal framework for directly modelling the joint cumulative distribution function, or CDF.

With the CDN, we can thus expand the set of possible queries so that in addition to formu-

lating queries as conditional/marginal probabilities of the form P (xA) and P (xA|xB), we

can also compute probabilities of the form F (xA|XB ≤ xB), F (xA|xB), P (xA|XB ≤ xB)

and F (xA), where F (xU) ≡ ℙ

[

XU ≤ xU

]

is a cumulative distribution function. Examples

of this new type of query could be “Given that the drug dose was less than 1 mg, what

is the probability of the patient living at least another year?”. A significant advantage

with CDNs is that the graphical representation of the joint CDF may naturally allow

for queries which would otherwise be difficult to compute under other types of graphical

41

Chapter 3. Cumulative distribution networks 42

model.

In this chapter, we will define the CDN and we will show that the conditional indepen-

dence properties of such graphical models are distinct from the properties for Bayesian

networks, Markov random fields and factor graphs. We will then show that the condi-

tional independence properties of CDNs include the properties of bidirected graphical

models [13, 59] and so CDNs can provide a class of parameterizations for such proba-

bility models. We will later show in Chapter 5 that CDNs provide a tractable means of

parameterizing models for learning to rank in which we can construct multivariate CDFs

from product of CDFs defined over subsets of variables.

3.1 The cumulative distribution network: A graphical

model for cumulative distribution functions

Definition 3.1.1. A cumulative distribution network (CDN) is an undirected bipartite

graphical model consisting of a bipartite graph G = (V, S, E), where V denotes variable

nodes and S denotes factor nodes, with edges in E connecting factor nodes to variable

nodes. The CDN also includes a specification of functions φs(xs) for each function node

s ∈ S, where xs ≡ xN (s) and each function φs : ℝ|N (s)| 7→ [0, 1] satisfies the properties of

a CDF (Theorem 2.1.1). The joint CDF over the variables in the CDN is then given by

the product over functions φs, or

F (x) =
∏

s∈S
φs(xs). (3.1)

□

Example 3.1.1. For the CDN in Figure 3.1, the joint CDF over three variables X, Y, Z

is given by

F (x, y, z) = φa(x, y)φb(x, y, z)φc(y, z)φd(z). (3.2)

Chapter 3. Cumulative distribution networks 43

Figure 3.1: A cumulative distribution network (CDN) over three variables and four functions.

□

In the CDN, each function node (depicted as a diamond) corresponds to one of the

functions φs(xs) in the model for the joint CDF F (x). Thus, one can think of the

CDN as a factor graph for modelling the joint CDF instead of the joint PDF. Since the

CDN is a graphical model for the joint CDF, the functions in the CDN must be such

that their product satisfies the conditions of Theorem 2.1.1 so that F (x) is a CDF for

some probability ℙ. The following lemma establishes that it is sufficient that the CDN

functions φs be themselves CDFs in order for F to be a CDF.

Lemma 3.1.1. Suppose that ∪s∈SN (s) = V . If all functions φs(xs) satisfy the properties

of a CDF, then the product
∏

s∈S
φs(xs) also satisfies the properties of a CDF (Theorem

2.1.1).

Proof. If for all s ∈ S, we have lim
xs→∞

φs(xs) = 1, then lim
x→∞

∏

s∈S
φs(xs) = 1. Furthermore,

we have that for any α ∈ V , there exists s ∈ N (α) so we have lim
xα→−∞

φs(xs) = 0 and

hence lim
xα→−∞

∏

s∈S
φs(xs) = 0.

To show that the product of monotonically non-decreasing functions is monotonically

non-decreasing, we note that xs ≤ ys for all s ∈ S if x ≤ y. Thus, since for all s ∈ S we

have φs(xs) ≤ φs(ys) for all xs ≤ ys for all s ∈ S, we can write

F (x) =
∏

s∈S
φs(xs) ≤

∏

s∈S
φs(ys) = F (y). (3.3)

Finally, a product of right-continuous functions is also right-continuous. Thus if all of

the functions φs(xs) satisfy the properties of a CDF, then the product of such functions

Chapter 3. Cumulative distribution networks 44

also satisfies the properties of a CDF.

Although the condition that each of the φs functions be a CDF is sufficient for the

overall product to satisfy the properties of a CDF, we emphasize that it is not a necessary

condition. One could construct a function which satisfies the properties of a CDF from

a product of functions that are not CDFs. The lemma above ensures, however, that we

can construct CDNs by multiplying together CDFs to obtain another CDF.

The above definition and lemma do not assume differentiability of the CDF or of the

CDN functions. The following proposition shows that differentiability and non-negativity

of the derivatives of functions φs with respect to all neighboring variables in N (s) imply

both differentiability and monotonicity of the joint CDF F (x).

Proposition 3.1.2. If the mixed derivatives ∂xA

[

φs(xs)
]

satisfy ∂xA

[

φs(xs)
]

≥ 0 for all

s ∈ S and A ⊆ N (s), then F (x) is differentiable, ∂xC

[

F (x)
]

≥ 0 for all C ⊆ V , and

F (x) ≤ F (y) for all x ≤ y.

Proof. A product of differentiable functions is differentiable and so F (x) is differentiable.

To show that ∂xC

[

F (x)
]

≥ 0 ∀ C ⊆ V , we can group the functions φs(xs) arbitrarily into

two functions g(x) and h(x) so that F (x) = g(x)h(x). The goal here will be to show that

if all derivatives ∂xA

[

g(x)
]

and ∂xA

[

h(x)
]

are non-negative, then ∂xA

[

F (x)
]

must also

be non-negative. For all C ⊆ V , applying the product rule to F (x) = g(x)h(x) yields

∂xC

[

F (x)
]

=
∑

A⊆C
∂xA

[

g(x)
]

∂xC\A

[

h(x)
]

, (3.4)

so if ∂xA

[

g(x)
]

, ∂xC\A

[

h(x)
]

≥ 0 for all A ⊆ C then ∂xC

[

F (x)
]

≥ 0. By recursively

applying this rule to each of the functions g(x), h(x) until we obtain sums over terms

involving ∂xA

[

φs(xs)
]

∀ A ⊆ N (s), we see that if ∂xA

[

φs(xs)
]

≥ 0, then ∂xC

[

F (x)
]

≥

0 ∀ C ⊆ V .

Now, ∂xC

[

F (x)
]

≥ 0 for all C ⊆ V implies that ∂xα

[

F (x)
]

≥ 0 for all α ∈ V . By

the Mean Value Theorem for functions of several variables, it then follows that if x ≤ y,

Chapter 3. Cumulative distribution networks 45

then

F (y)− F (x) =
∑

α∈V
∂zα

[

F (z)
]

(yα − xα) ≤ 0, (3.5)

and so F (x) is monotonic.

Proposition 3.1.2 thus shows that we can ensure differentiability and monotonicity of

the joint CDF by constraining the derivatives of each of the CDN functions. We note

that although it is merely sufficient for the first order derivatives to be non-negative in

order for F (x) to be monotonic, the condition that the higher order mixed derivatives

of the functions φs(xs) be non-negative also implies non-negativity of the first order

derivatives. Thus in the sequel, whenever we assume differentiability of CDN functions,

we will assume that for all s ∈ S, all mixed derivatives of φs(xs) with respect to any and

all subsets of argument variables are non-negative. While non-negativity of the mixed

derivatives is sufficient for monotonicity of F , it is not a necessary condition. Thus, the

sufficient condition allows us to easily design functions whose product yields a function

F which satisfies the properties of a CDF, but a result of this is that the CDN may only

be able to model a subset of the full set of all possible CDFs.

Having described the above conditions on CDN functions, we will now provide some

examples of CDNs constructed from a product of CDFs.

Figure 3.2: A CDN defined over two variables X and Y with functions G1(x, y), G2(x, y).

Example 3.1.2 (Product of bivariate Gaussian CDFs). As a simple example of a CDN,

consider two random variables X and Y with joint CDF modeled by the CDN in Figure

3.2, so that F (x, y) = G1(x, y)G2(x, y) with

Chapter 3. Cumulative distribution networks 46

x

y

2 4 6 8 10 12

2

4

6

8

10

(a)

x

y

−4 −2 0 2 4
1

2

3

4

5

(b)

x

y

0 2 4 6 8

0

2

4

6

8

(c)

Figure 3.3: a) Joint probability density function P (x, y) corresponding to the distribution

function F (x, y) using bivariate Gaussian CDFs as CDN functions; b),c) The PDFs correspond-

ing to ∂x,y
[

G1(x, y)
]

and ∂x,y
[

G2(x, y)
]

.

G1(x, y) = Φ





[

x
y

]

;µ1,Σ1



, µ1 =

[

µx,1
µy,1

]

, Σ1 =

[

σ2
x,1 ρ1σx,1σy,1

ρ1σx,1σy,1 σ2
y,1

]

,

G2(x, y) = Φ





[

x
y

]

;µ2,Σ2



, µ2 =

[

µx,2
µy,2

]

, Σ2 =

[

σ2
x,2 ρ2σx,2σy,2

ρ2σx,2σy,2 σ2
y,2

]

, (3.6)

where Φ(·; m,S) is the multivariate Gaussian CDF with mean vector m and covariance

S. Taking derivatives, the density P (x, y) is given by

P (x, y) = ∂x,y

[

F (x, y)
]

= ∂x,y

[

G1(x, y)G2(x, y)
]

= G1(x, y)∂x,y

[

G2(x, y)
]

+ ∂x

[

G1(x, y)
]

∂y

[

G2(x, y)
]

+ ∂y

[

G1(x, y)
]

∂x

[

G2(x, y)
]

+ ∂x,y

[

G1(x, y)
]

G2(x, y). (3.7)

We can compute each of the derivative terms as

Chapter 3. Cumulative distribution networks 47

∂x,y

[

G1(x, y)
]

= Gaussian





[

x
y

]

;µ1,Σ1



, ∂x,y

[

G2(x, y)
]

= Gaussian





[

x
y

]

;µ2,Σ2





(3.8)

∂x

[

G1(x, y)
]

=
∫ y

−∞
Gaussian





[

x
t

]

;µ1,Σ1



 dt

= Gaussian(x;µx,1, σ
2
x,1)
∫ y

−∞
Gaussian(t;µy|x,1, σ

2
y|x,1) dt

= Gaussian(x;µx,1, σ
2
x,1)Φ(y;µy|x,1, σ

2
y|x,1) (3.9)

∂y

[

G1(x, y)
]

=
∫ x

−∞
Gaussian





[

s
y

]

;µ1,Σ1



 ds

= Gaussian(y;µy,1, σ
2
y,1)
∫ x

−∞
Gaussian(s;µx|y,1, σ

2
x|y,1) ds

= Gaussian(y;µy,1, σ
2
y,1)Φ(x;µx|y,1, σ

2
x|y,1) (3.10)

∂x

[

G2(x, y)
]

=
∫ y

−∞
Gaussian





[

x
t

]

;µ2,Σ2



 dt

= Gaussian(x;µx,2, σ
2
x,2)
∫ y

−∞
Gaussian(t;µy|x,2, σ

2
y|x,2) dt

= Gaussian(x;µx,2, σ
2
x,2)Φ(y;µy|x,2, σ

2
y|x,2)

∂y

[

G2(x, y)
]

=
∫ x

−∞
Gaussian





[

s
y

]

;µ2,Σ2



 ds

= Gaussian(y;µy,2, σ
2
y,2)
∫ x

−∞
Gaussian(s;µx|y,2, σ

2
x|y,2) ds

= Gaussian(y;µy,2, σ
2
y,2)Φ(x;µx|y,2, σ

2
x|y,2), (3.11)

where

µy|x,1 = µy,1 + ρ1
σy,1
σx,1

(x− µx,1) µx|y,1 = µx,1 + ρ1
σx,1
σy,1

(y − µy,1)

µy|x,2 = µy,2 + ρ2
σy,2
σx,2

(x− µx,2) µx|y,2 = µx,2 + ρ2
σx,2
σy,2

(y − µy,2)

σ2
y|x,1 = (1− ρ2

1)σ2
y,1 σ2

x|y,1 = (1− ρ2
1)σ

2
x,1

σ2
y|x,2 = (1− ρ2

2)σ2
y,2 σ2

x|y,2 = (1− ρ2
2)σ

2
x,2. (3.12)

Chapter 3. Cumulative distribution networks 48

The resulting joint PDF P (x, y) obtained by differentiating the CDF is shown in Figure

3.3(a), where the CDN function parameters are given by µx,1 = 0, µx,2 = 4, µy,1 =

3, µy,2 = 4, σx,1 =
√

3, σx,2 =
√

5, σy,1 = 1, σy,2 =
√

10, ρ1 = 0.9, ρ2 = −0.6. The PDFs

corresponding to ∂x,y

[

G1(x, y)
]

and ∂x,y

[

G2(x, y)
]

are shown in Figures 3.3(b) and 3.3(c).

□

The next example provides an illustration of the use of copula functions for construct-

ing multivariate CDFs under the framework of CDNs.

x

y

0 5 10

0

5

10

(a)

−20 0 20
−20

−10

0

10

20

(b)

x

y

−2 0 2
−2

−1

0

1

2

(c)

Figure 3.4: a) Joint probability density function P (x, y) corresponding to the distribution

function F (x, y) using bivariate Gumbel copulas as CDN functions, with Student’s-t and Gaus-

sian marginal input CDFs; b),c) The PDFs corresponding to ∂x,y
[

G1(x, y)
]

and ∂x,y
[

G2(x, y)
]

.

Example 3.1.3 (Product of copulas). We can repeat the above for the case where each

CDN function consists of a copula function (see Section 2.3). Copula functions provide

a flexible means to construct CDN functions φs whose product yields a joint CDF under

Lemma 3.1.1. Copula functions allow one to construct a multivariate CDF φs from

marginal CDFs {F (xα)}α∈N (s) so that

φs(xs) = ζs

(

{F (xα)}α∈N (s)

)

, (3.13)

where ζs is a copula defined over variables Xα, α ∈ N (s). For the CDN shown in Figure

Chapter 3. Cumulative distribution networks 49

3.2, we can set the CDN functions G1, G2 to Gumbel copulas so that

G1(x, y) = ζ1(H1,x(x), H1,y(y)) = exp



−
(

− 1

θ1

(

logH1,x(x) + logH1,y(y)
)

)θ1


,

G2(x, y) = ζ2(H2,x(x), H2,y(y)) = exp



−
(

− 1

θ2

(

logH2,x(x) + logH2,y(y)
)

)θ2


,

(3.14)

with H1,x, H2,x set to univariate Gaussian CDFs with parameters µ1,x, µ2,x, σ1,x, σ2,x and

H1,y, H2,y set to univariate Student’s-t CDFs with parameters σ1,y, σ2,y. One can then

verify that the functions G1, G2 satisfy the properties of a copula function (Section 2.3)

and so the product of G1, G2 yields the CDF F (x, y). An example of the resulting

joint probability density P (x, y) obtained by differentiation of F (x, y) for parameters

µ1,x = µ2,x = 0, σ1,x = σ2,x = σ1,y = σ2,y = 10, θ1 = θ2 = 1 is shown in Figure 3.4(a), with

the PDFs corresponding to ∂x,y

[

G1(x, y)
]

and ∂x,y

[

G2(x, y)
]

shown in Figures 3.4(b) and

3.4(c). □

x

y

−2 0 2 4 6

0

10

20

(a)

x

y

−10 −5 0 5

−5

0

5

(b)

x

y

−2 0 2

−20

0

20

(c)

Figure 3.5: a) Joint probability density function P (x, y) corresponding to the distribution

function F (x, y) using bivariate sigmoidal functions as CDN functions; b),c) The PDFs corre-

sponding to ∂x,y
[

G1(x, y)
]

and ∂x,y
[

G2(x, y)
]

.

Example 3.1.4 (Product of bivariate sigmoids). As another example of a probability

density function constructed using a CDN, consider the case in which functions G1(x, y)

Chapter 3. Cumulative distribution networks 50

and G1(x, y) in the CDN of Figure 3.2 are set to be multivariate sigmoids of the form

G1(x, y) =
1

1 + exp(−w1
xx) + exp(−w1

yy)

G2(x, y) =
1

1 + exp(−w2
xx) + exp(−w2

yy)
, (3.15)

with w1
x, w

1
y, w

2
x, w

2
y non-negative. An example of the resulting joint probability density

P (x, y) obtained by differentiation of F (x, y) = G1(x, y)G2(x, y) for parameters w1
x =

1.5, w1
y = 0.15, w2

x = 0.4, w2
y = 0.5 is shown in Figure 3.5(a), with the PDFs corresponding

to ∂x,y

[

G1(x, y)
]

and ∂x,y

[

G2(x, y)
]

shown in Figures 3.5(b) and 3.5(c). □

The above examples demonstrate that one can construct multivariate CDFs by taking

a product of CDFs defined over subsets of variables in the graph. Having defined the CDN

and presented some basic properties, we will now present the corresponding conditional

independence properties that are implied by the definition of a CDN.

3.2 Marginal and conditional independence properties

In this section, we will derive the marginal and conditional independence properties for

a CDN. We will see that the conditional independence properties for a CDN are distinct

from those of Bayesian networks, Markov random fields or factor graphs. To begin,

we consider a toy example of the marginal independence property for a three-variable

CDN in Figure 3.6, where variables X and Y are separated by variable Z and so are

marginally independent. In a CDN, variables that share no neighbors in the CDN graph

are marginally independent: we formalize this now with the following theorem.

Theorem 3.2.1 (Marginal Independence). Let G = (V, S, E) be a CDN and let A,B ⊆ V

be disjoint sets of variables. Then A ⊥⊥ B if N (A) ∩N (B) = ∅.

Proof. Since N (A) ∩N (B) = ∅, we have

F (x) =
∏

s∈N (A)

φs(xs)
∏

s∈N (B)

φs(xs)
∏

s/∈N (A)∪N (B)

φs(xs). (3.16)

Chapter 3. Cumulative distribution networks 51

Figure 3.6: Marginal independence property of CDNs: if two variables X and Y share no

common function nodes, they are marginally independent.

Marginalizing over all other variables XV \(A∪B), we obtain

F (xA,xB) = lim
xV \(A∪B)→∞

F (x)

= lim
xV \(A∪B)→∞

∏

s∈N (A)

φs(xs)
∏

s∈N (B)

φs(xs)
∏

s∈S\(N (A)∪N (B))

φs(xs)

=
∏

s∈N (A)

lim
xN (s)\A→∞

φs(xs)
∏

s∈N (B)

lim
xN (s)\B→∞

φs(xs)
∏

s∈S\(N (A)∪N (B))

lim
xN (s)→∞

φs(xs),

(3.17)

where in the last line we have the used the fact that the limit of a product is equal to

the product of limits. Let

g(xA) =
∏

s∈N (A)

lim
xN (s)\A→∞

φs(xs)

h(xB) =
∏

s∈N (B)

lim
xN (s)\B→∞

φs(xs). (3.18)

Since g, h are products of CDFs, they satisfy the properties of a CDF and so by Lemma

3.1.1, we have
∏

s∈S\(N (A)∩N (B))

lim
xN (s)→∞

φs(xs) = 1 and lim
xA→∞

g(xA) = lim
xB→∞

h(xB) =

1. Furthermore, it follows that F (xA) = lim
xB→∞

F (xA,xB) = g(xA) and F (xB) =

lim
xA→∞

F (xA,xB) = h(xB) by marginalizing away the appropriate sets of variables. Thus,

we have F (xA,xB) = F (xA)F (xB) and so A ⊥⊥ B.

Note that the converse to the above does not generally hold: if disjoint sets A and

B do share functions in S, they can still be marginally independent, as one can easily

Chapter 3. Cumulative distribution networks 52

construct a bipartite graph in which variable nodes are not separated in the graph but

the function nodes connecting A to B correspond to factorized functions so that A ⊥⊥ B.

Having derived the marginal independence property in a CDN, we now consider the

conditional independence property of a CDN. To motivate this, we first present a toy

example in Figure 3.7 in which we are given CDNs for variables X, Y, Z,W and we

condition on variable Z. Here the separation of X and Y by unobserved variable W

implies X ⊥⊥ Y |Z, but separation of X and Y by observed variable Z only implies

the marginal independence relationship X ⊥⊥ Y . In general, variable sets which are

separated in a CDN by unobserved variables will be conditionally independent given all

other variables. We formalize this conditional independence property with the following

theorem.

Figure 3.7: Conditional independence in CDNs. Two variables X and Y are marginally

independent given the variable Z that separates X from Y with respect to the graph (top).

When an unobserved variableW separates X from Y , X,Y are conditionally independent given

Z (bottom).

Theorem 3.2.2 (Conditional independence in CDNs). Let G = (V, S, E) be a CDN. For

all disjoint sets of A,B,C ⊆ V , if C separates A from B relative to graph G then

A ⊥⊥ B|V \ (A ∪B ∪ C). (3.19)

Proof. If C separates A from B, then marginalizing out variables in C yields two disjoint

subgraphs with variable sets A′, B′, with A ⊆ A′,B ⊆ B′, A′ ∪B′ = V \ C and N (A′) ∩

N (B′) = ∅. From Theorem 3.2.1, we therefore have A′ ⊥⊥ B′. Now consider the set

Chapter 3. Cumulative distribution networks 53

V \ A ∪B ∪ C and let Ã, B̃ denote the partition of the set so that

Ã ∪ B̃ = V \ (A ∪B ∪ C), Ã ∩ B̃ = ∅

Ã ∩ B′ = ∅, B̃ ∩A′ = ∅ (3.20)

From the axioms of conditional independence (Section 2.6.1), A′ ⊥⊥ B′ implies A ⊥⊥

B|V \ (A ∪B ∪ C) since Ã ⊂ A′ and B̃ ⊂ B′.

An illustration of the above proof is provided in Figure 3.8(a). The above theorem

demonstrates that if C separates A from B with respect to G for disjoint subsets of nodes

A,B,C, then A ⊥⊥ B|V \ (A ∪ B ∪ C).

The conditional independence property of CDNs is in fact identical to the dual Markov

property of [37] for bidirected graphs

Proposition 3.2.3. Let A,B,C ⊆ V be three disjoint node sets so that V \ (A∪B ∪C)

separates A from B with respect to G. Then A ⊥⊥ B|C. □

Corollary 3.2.4. Let A,B,C ⊆ V be three disjoint node sets so that C separates A

from B with respect to G. Then A ⊥⊥ B. □

The corollary is readily proven by noting that V \ (A ∪ B) separates sets A and B

with respect to G.

In addition to the above, the conditional independence property in a CDN is closed

under marginalization, so that if G is a CDN model for F (x), then there is a CDN for

representing any marginal CDF F (xA) = lim
xV \A→∞

F (xA,xV \A).

Proposition 3.2.5. Let G = (V, S, E) be a CDN and let A,B,C ⊂ V be disjoint sets of

nodes with C separating A from B with respect to G. Let G′ = (V ′, S ′, E ′) be a subgraph

of G with V ′ ⊆ V, S ′ ⊆ S,E ′ ⊆ E. Similarly, let A′ = A ∩ V ′, B′ = B ∩ V ′, C ′ = C ∩ V ′

be disjoint sets of nodes with A′ ⊆ A,B′ ⊆ B,C ′ ⊆ C. Then C ′ separates A′ from B′

with respect to G′. □

Chapter 3. Cumulative distribution networks 54

(a)

(b)

Figure 3.8: Example of conditional independence due to graph separation in a CDN. a) Given

bipartite graph G = (V, S,E), node set C separates set A from B (nodes in red) with respect to

G. Furthermore, we have for A′, B′ (nodes in green dotted line) A ⊆ A′, B ⊆ B′, A′∪B′ = V \C

and N (A′) ∩N (B′) = ∅ as shown. b) Marginalizing out variables corresponding to nodes in C

yields two disjoint subgraphs of G and so A ⊥⊥ B|V \ (A ∪B ∪ C).

As a result, the conditional independence relation A′ ⊥⊥ B′|V ′ \ (A′ ∪ B′ ∪ C ′) must

also hold in G′. The above closure property under marginalization is a property that also

Chapter 3. Cumulative distribution networks 55

holds for Markov random fields, but not for Bayesian networks (see [58]).

Proposition 3.2.6. Let G = (V, S, E) be a CDN and let A,B,C ⊆ V be disjoint sets of

variable nodes. If C separates A from B with respect to G, then A ⊥⊥ B|ω
(

xC
)

where

ω
(

xC
)

≡ {XC ≤ xC}.

Proof. If C separates A from B with respect to G, then we can write

F (xA,xB,xC) = g(xA,xC)h(xB,xC) (3.21)

for some functions g, h that satisfy the conditions of Lemma 3.1.1. This then means that

F (xA,xB|ω(xC)) is given by

F (xA,xB|ω(xC)) =
F (xA,xB,xC)

F (xC)

∝ F (xA,xB,xC) = g(xA,xC)h(xB,xC), (3.22)

which implies A ⊥⊥ B|ω(xC).

In the next theorem, we show that if a CDF F (x) satisfies the conditional indepen-

dence properties for a given CDN, then F can be written as a product over functions

defined over neighboring sets of variable nodes in G.

Theorem 3.2.7 (Factorization property of a CDN). Let G = (V, S, E) be a bipartite

graph. Given a CDF F (x), suppose F satisfies all of the conditional independence prop-

erties implied by the CDN described by G (Theorem 3.2.2), so that for all disjoint subsets

of variable nodes A,B ⊆ V and separating sets of variable nodes C ⊆ V \ A ∪ B which

separate A and B with respect to G, A ⊥⊥ B|V \ (A ∪ B ∪ C) is satisfied. Then there

exist functions φs(xs), s ∈ S that satisfy the properties of a CDF so that the joint CDF

F (x) factors as
∏

s∈S
φs(xs).

Proof. The proof here parallels that for the Hammersley-Clifford theorem for undirected

graphical models [42]. We begin our proof by defining ψU (x), ζU(x) as functions that

Chapter 3. Cumulative distribution networks 56

depend only on variable nodes in some set U ⊆ V and that form a Möbius transform

pair

ψU(x) =
∑

W⊆U
ζW (x) (3.23)

ζU(x) =
∑

W⊆U
(−1)|U\W |ψW (x), (3.24)

where we take ψU(x) ≡ logF (xU). Now, we note that F (x) can always be written as

a product of functions
∏

U⊆V
φU(x) where each function φU satisfies the properties of a

CDF: a trivial example of this is to set φV (x) = F (x) and φU(x) = 1 for all U ⊂ V .

Since by hypothesis F satisfies all of the conditional independence properties implied by

the CDN described by G, if we take φU(x) = exp
(

ζU(x)
)

, then it suffices to show that

ζU(x) ≡ 0 for subsets of variable nodes U for which any two non-neighboring variable

nodes α, β ∈ U are separated by variable nodes in some set C ⊆ U \ (α ∪ β). If U is

such that we can find α, β ∈ U that are separated, then by Corollary 3.2.4, we must have

both α ⊥⊥ β | U \ (α ∪ β ∪ C) and thus α ⊥⊥ β. Now we can write ζU(x) as

ζU(x) =
∑

W⊆U
(−1)|U\W |ψW (x)

=
∑

W⊆U\(α∪β)

(−1)|U\W |
(

ψW (x)− ψW∪α(x)− ψW∪β(x) + ψW∪α∪β(x)
)

. (3.25)

Since we have α ⊥⊥ β, we have F (xα, xβ,xW) = f(xα,xW)g(xβ,xW) for W ⊆ U \ (α∪ β)

and for functions f, g that satisfy the properties of a CDF so that

ψW∪α∪β(x)− ψW∪α(x) = log
F (xα, xβ,xW)

F (xα,xW)
= log

f(xα,xW)g(xβ,xW)

f(xα,xW)g(∞,xW)

= log
f(∞,xW)g(xβ,xW)

f(∞,xW)g(∞,xW)

= logF (xβ,xW)− logF (xW)

= ψW∪β(x)− ψW (x). (3.26)

Thus if U is any set where nodes α, β ∈ U are separated by some set C ⊆ U \(α∪β), then

for all W ⊆ U \(α∪β) we must have ψW (x)−ψW∪α(x)−ψW∪β(x)+ψW∪α∪β(x) ≡ 0 and so

Chapter 3. Cumulative distribution networks 57

ζU(x) = 0. Since F (x) = exp(ψV (x)) = exp
(

∑

U

ζU(x)
)

=
∏

U

φU(x) where the product

is taken over subsets of variable nodes U that are not separated, and noting that for each

s, variable nodes in N (s) are not separated, we can then substitute φU(x) = φs(xs) into

the product with U = N (s). Thus we can write F (x) =
∏

s∈S
φs(xs), where each function

φs is defined over the set of variable nodes N (s).

Thus, if F (x) satisfies all of the conditional independence properties of a CDN, then

F can be written as a product of functions of the form
∏

s∈S
φs(xs). Theorems 3.2.2 and

3.2.7 show that the conditional independence property of a CDN is equivalent to the

factorization property, so that graph separation of disjoint subsets A and B by set C

implies A ⊥⊥ B|V \ (A ∪B ∪ C) if and only if F (x) =
∏

s∈S
φs(xs). The above closure and

conditional independence properties for CDNs have also been previously shown to hold

for bidirected graphs as well, as we will now discuss.

3.3 Cumulative distribution networks as bidirected graphs

The independence properties of CDNs have in fact been studied previously in the statistics

literature. As shown above, the conditional independence property given in Proposition

3.2.3 for CDNs corresponds to the dual global Markov property of [37] (Theorem 2.6.3) in

the context of bidirected graphical models. Furthermore, the connected set property for

CDNs presented in Theorem 3.2.7 is in fact identical to the connected set property of [58],

which was also derived in the context of bidirected graphical models [13, 58, 59]. This

therefore suggests that graph separation in a CDN and a bidirected graph that contains

the same paths between variable nodes implies the same sets of independence statements.

More precisely, in a bidirected graphical model, the lack of an edge between two nodes α

and β implies α ⊥⊥ β. Concomitantly, we have shown that in a CDN, two nodes that do

not share any function nodes in common are marginally independent. An example of a

Chapter 3. Cumulative distribution networks 58

bidirected graph and CDN that model the same set of marginal independence constraints

is shown in Figures 3.9(a), 3.9(b).

(a) (b)

Figure 3.9: a) A bidirected graph over four variables X1,X2,X3,X4; b) A corresponding

CDN. Graph separation of nodes in both graphs imply the marginal independence relations

X1 ⊥⊥ X4,X2 ⊥⊥ X3.

Several parameterizations had been previously proposed for bidirected graphical mod-

els. Covariance graphs [37] were proposed in which variables are jointly Gaussian with

zero pairwise covariance if there is no edge connecting the two variables in the bidirected

graph. In addition, [63] proposed a mixture model with latent variables in which depen-

dent variables in the bidirected graph can be explained by the causal influence of common

components in the mixture model. For bidirected graphical models defined over binary

variables, a parameterization was proposed based on joint probabilities over connected

components of the bidirected graph so that the joint probability of any subset of variables

could be obtained by Möbius inversion [13]. As we have shown that the above condi-

tional independence properties in CDNs are identical to those for bidirected graphical

models, CDNs supplement the above parameterizations with a class of parameterizations

for bidirected graphical models that are distinct from the parameterizations proposed by

[13, 37, 63].

While the conditional independence properties of continuous variable CDNs are iden-

tical to those of bidirected graphical models defined over continuous variables, in the

case of graphical models defined over discrete variables there is an additional conditional

Chapter 3. Cumulative distribution networks 59

independence property that is distinct from the conditional independence properties of

bidirected graphical models. For a CDN defined over discrete variables taking values in

an ordered set X = {r1, · · · , rK}, conditioning on the event XC = r11 yields conditional

independence between disjoint sets A,B,C ⊆ V in which C separates A,B with respect

to G. We will define the corresponding min-independence property below.

Definition 3.3.1 (Min-independence). Let XA,XB,XC be sets of ordinal discrete vari-

ables that take on values in the totally ordered alphabet X with minimum element r1 ∈ X

defined as r1 ≺ α ∀α 6= r1, α ∈ X . XA and XB are said to be min-independent given XC

if

XA ⊥⊥ XB|XC = r11, (3.27)

where r11 = [r1 · r1]
T . □

Theorem 3.3.1 (Min-independence property of CDNs). Let G = (V, S, E) be a CDN

defined over ordinal discrete variables that take on values in the totally ordered alphabet

X with minimum element r1 ∈ X defined as r1 ≺ α ∀α 6= r1, α ∈ X . Let A,B,C ⊆ V

be arbitrary disjoint subsets of V, with C separating A,B with respect to G. Then XA

and XB are min-independent given XC.

Proof. Since C separates A from B with respect to G, we can write

F (xA,xB,xC) = φ(xA,xC)ψ(xB,xC). (3.28)

The conditional CDF F (xA,xB|xC = r11) is then given by

F (xA,xB|xC = r11) =
ℙ

[

{XA ≤ xA} ∩ {XB ≤ xB} ∩ {XC = r11}
]

ℙ

[

XC = r11
]

=
ℙ

[

{XA ≤ xA} ∩ {XB ≤ xB} ∩ {XC ≤ r11}
]

ℙ

[

XC ≤ r11
]

∝ φ(xA, r11)ψ(xB, r11), (3.29)

and so XA ⊥⊥ XB|XC = r11.

Chapter 3. Cumulative distribution networks 60

Thus, in the case of a CDN defined over discrete variables where each variables can

have values in the discrete poset X , a finite difference with respect to variables XC ,

when evaluated at the vector of minimum elements XC = r11 is equivalent to directly

evaluating the CDF at XC = r11. Thus CDNs defined over discrete variables admit an

additional set of rules for assessing conditional independence between sets of variables

than those for bidirected graphs defined over discrete variables. This means that in the

case of models defined over ordinal discrete variables, the particular set of conditional

independence relationships amongst variables in the model is determined as a function

of the ordering over possible labels for each variable in the model, so that one must

exercise care in how such variables are labelled and what ordering is satisfied by such

labels. The above conditional independence property demonstrates however that CDNs

defined over discrete variables can be used to construct probability distributions which

naturally admit conditional independence relationships amongst model variables which

are a function of variable configurations in the model.

3.4 Converting a cumulative distribution network to a

factor graph

The connection with bidirected graphical models also allows us to establish a rule for

converting between CDNs and factor graphs. In particular, [58] established rules al-

lowing one to convert from a bidirected graphical to a canonical DAG model via the

introduction of additional latent variables and directed edges. The resulting probability

model obtained from marginalizing out these latent variables can be shown to satisfy

the same set of conditional independence properties that result from graph separation

in the original bidirected graph (see Figures 2.6(a), 2.6(b)). This transformation rule

thus allows one to explain the presence of statistical dependence relationships between

observable variables in the CDN through the causal influence of shared latent variables

Chapter 3. Cumulative distribution networks 61

in the corresponding factor graph. We can take advantage of the connection between

bidirected graphical models and directed graphical models to construct a corresponding

factor graph for a CDN in which we introduce additional latent variables into the prob-

ability model. Any probability modeled by this factor graph must satisfy the same set

of independence constraints implied by graph separation of variables in the CDN. We

present the corresponding representation theorem below.

Theorem 3.4.1 (Factor graph representation for a CDN). Let G = (V, S, E) be a CDN

and let A,B,C ⊆ V be any disjoint subsets of nodes in G with C separating A from B

with respect to G. For each s ∈ S, let Ys be a latent random variable corresponding to

function φs and let Yα = {Ys : s ∈ N (α)} be a vector of such latent random variables

corresponding to functions connected to node α in G. Let Y = {Ys : s ∈ S} with

Ys ⊥⊥ Ys′ ∀ s 6= s′ and let YU be the vector of variables {Ys : s ∈ N (U)} for some

subset of variable nodes U . Let G′ = (V ′, S ′, E ′) be the factor graph modelling the joint

probability density function

P (x,y) =
∏

α∈V
P (xα|yα)

∏

s∈S
P (ys). (3.30)

with V ′ = (V, S) and S ′ = V . Then for any disjoint subsets A,B,C ⊆ V where C sep-

arates A from B with respect to G, the probability density P (x) obtained by marginal-

izing the probability P (x,y) modeled by G′ with respect to the variables Y satisfies

A ⊥⊥ B|V \ (A ∪B ∪ C).

Proof. We begin by noting that by hypothesis, there is a one-to-one correspondence

between the latent variables in the factor graph and the function nodes in the CDN

and there is also a one-to-one correspondence between observable variable nodes V in

the CDN and the factor nodes in the factor graph. Thus each latent variable Ys has

neighboring factor nodes fα for α ∈ N (s) in the factor graph G′.

If C separates A from B with respect to G, then removing nodes in C from G by

marginalizing out the corresponding variables yields at least two disjoint subgraphs with

Chapter 3. Cumulative distribution networks 62

node sets A′, B′, with A ⊆ A′,B ⊆ B′, A′ ∪ B′ = V \ C and N (A′) ∩ N (B′) = ∅. In G′,

we must therefore have YA′ ∩YB′ = ∅. The probability density P (xV \C ,y) modeled by

the factor graph G′ with variables XC marginalized out can then be written as

P (xV \C ,y) =
∫

xC

P (x,y) dxC

=
∏

s∈S
P (ys)

∏

α∈V \C
P (xα|yα)

=





∏

s∈N (A′)

P (ys)





∏

α∈A′
P (xα|yα)

∏

s∈N (B′)

P (ys)





∏

β∈B′
P (xβ|yβ)





= fA′(xA′,yA′)fB′(xB′ ,yB′) (3.31)

for some functions fA′ , fB′. Thus the conditional probability P (xA,xB|xV \(A∪B∪C)) must

have the form

P (xA,xB|xV \(A∪B∪C)) ∝ P (xA,xB,xV \(A∪B∪C)) =
∫

y
P (xV \C ,y) dy

=
∫

yA′

fA′(xA′ ,yA′) dyA′
∫

yB′

fB′(xB′ ,yB′) dyB′

= f̃A(xA,xA′\A)f̃B(xB,xB′\B) (3.32)

for functions f̃A, f̃B, where in the last line we have used A ⊆ A′, B ⊆ B′. Since A′∩B′ = ∅,

the above is equivalent to A ⊥⊥ B|V \ (A ∪B ∪ C).

Thus for any given CDN, there exists a factor graph that can be obtained by mapping

each variable node in the CDN to a factor node in the factor graph and each function

node in the CDN to a latent variable in the factor graph. We then connect each factor

node fα to its corresponding observable variable node α and all latent variable nodes

Ys whose CDN function nodes are connected to α in the CDN. Finally, we set each

factor fα to be equal to the conditional probability P (xα|yα) under the joint probability

P (x,y). By doing so, if A,B,C are disjoint sets of variables where A is separated from

B by C with respect to G, then any joint probability P (x) obtained by marginalizing

Chapter 3. Cumulative distribution networks 63

over variables Y in the joint probability P (x,y) modeled by the corresponding factor

graph G′ = ((V, S), S, E ′) will satisfy A ⊥⊥ B|V \ (A ∪ B ∪ C). We note that the set of

conditional independence relationships amongst variables in the CDN are not preserved

in the construction if we set the factors fα to be arbitrary functions of neighboring

variables. Figures 3.10(a), 3.10(b), 3.10(c) provide examples of a CDN, a factor graph

and a Bayesian network in which any joint probability modeled by any of the three

graphical models must satisfy the same set of conditional independence relationships

between variables X1, X2, X3, X4.

In the above construction, the CDN models the CDF F (x) corresponding to a proba-

bility P (x,y) with latent variables Y marginalized out. Often, the cost of marginalizing

out latent variables in probability density functions can be difficult and may require

approximation schemes such as that of [50] or the use of sampling techniques [53]. The

representation theorem suggests that CDNs can be used to directly construct models over

observable variables without the need to explicitly introduce latent variables and then

marginalize these out of the model. Equivalently, one can view CDNs as directed graph-

ical models with latent variables implicitly marginalized out, so that we are left with a

probability model defined over the remaining observable variables. Note however that the

above theorem does not guarantee uniqueness of the CDN-factor graph pair, nor does it

always yield a closed-form mapping between CDN functions and factors. As a result, the

CDF F (x) modeled by the CDN and the probability P (x,y) modeled by the factor graph

are related by P (x) =
∫

y
P (x,y) = ∂x

[

F (x)
]

. The above representation theorem merely

guarantees the existence of a CDN-factor graph pair for which graph separation in the

CDN imply the same set of conditional independence relationships between observable

variables in the factor graph model. There is however a particular closed-form mapping

between a CDN and factor graph in the special case where variables in the CDN are

constrained to be maxima of latent variables in the factor graph. We formalize this in

the following lemma.

Chapter 3. Cumulative distribution networks 64

(a) (b)

(c)

Figure 3.10: a) A CDN defined over observable variables X1,X2,X3,X4; b) A factor graph

with latent variables Y1, Y2 introduced and factor nodes neighbouring observable variable nodes

are set to conditional probabilities conditioned on the latent variables; c) The corresponding

directed graphical model. Any joint probability modeled by any of three graphs satisfies the

marginal independence relations X2 ⊥⊥ X4.

Lemma 3.4.2. Let G′ be the factor graph for modelling the joint probability density

function

P (x,y) =
∏

α∈V
δ
(

xα, max
s∈N (α)

ys

)

∏

s∈S
ψs(ys), (3.33)

where ψs(ys) ≥ 0 ∀ys ∈ ℝ. Then the corresponding CDF F (x) obtained by marginalizing

out variables Y is given by the CDN G = (V, S, E) for

F (x) =
∏

s∈S
φs

(

min
α∈N (s)

xα

)

, (3.34)

Chapter 3. Cumulative distribution networks 65

with φs(u) =
∫ u
−∞ ψs(t) dt and φs(∞) =

∫∞
−∞ ψs(t) dt = 1.

Proof. This is a special case of the previous lemma with P (xα|yα) = δ
(

xα, max
s∈N (α)

ys

)

and

P (ys) = ψs(ys). If we write the joint CDF of variables Xα, α ∈ V , then we obtain

F (x) = ℙ



 ∩α∈V {Xα ≤ xα}


 = ℙ



 ∩α∈V { max
s∈N (α)

Ys ≤ xα}


 = ℙ



 ∩α∈V ∩s∈N (α){Ys ≤ xα}




= ℙ



 ∩s∈S {Ys ≤ min
α∈N (s)

xα}


 =
∏

s∈S
ℙ

[

Ys ≤ min
α∈N (s)

xα

]

=
∏

s∈S
φs

(

min
α∈N (s)

xα

)

, (3.35)

where we have used mutual independence of the Ys variables in the second to last line.

The above theorem allows us to view CDNs of the form of Equation 3.34 as graphical

extreme value distributions where each observable variable Xα in the model is equal to

the maximum over some finite subset of latent variables Ys. The graphical modelling

framework of CDNs thus allows one to model the set of statistical dependence relation-

ships between observable variables under the constraint that the observable variables are

equal to the maxima of subsets of latent variables, as we will now show with an example.

Example 3.4.1 (CDNs as graphical extreme value distributions). An example of an

extreme value distribution is the Gumbel distribution [21], which is the limiting distri-

bution of a maximum of an infinite number of random variables. Such distributions

arise frequently in applications in many fields, such as in finance and climate modelling.

Extreme value distributions allow us to model variables as being the result of comput-

ing the maximum of many random variables. As a result, such distributions typically

possess heavy tails, as opposed to many other distributions (e.g.: Gaussians, Poisson,

exponential distributions) in which tails decay exponentially.

In particular, the extreme value distributions which arise in practice are typically

multivariate and can be therefore be challenging to specify. If we model the statistical

dependence relationships between latent variables and observable variables as a factor

Chapter 3. Cumulative distribution networks 66

graph as per Lemma 3.4.2 and if we assume the latent variables Ys in the factor graph

are Gumbel-distributed, so that the functions φs(ys) take the form of Gumbel cumulative

distribution functions

φs(ys) = exp



− exp
(

− ys − µs
σs

)



 ∀ys ∈ ℝ, (3.36)

then the CDN provides a graphical representation for a multivariate Gumbel distribution,

as we now show.

Theorem 3.4.3 (Graphical Gumbel distributions). Let the latent variables {Ys}s∈S be

Gumbel-distributed so the marginal CDF of Ys is given by Equation (3.36). Then the

CDN functions are each given by multivariate Gumbel distributions of the form

φs(xs) ≡ φs

(

min
α∈N (s)

xα

)

= lim
t→∞

exp



−




∑

α∈N (s)

exp
(

− xα − µs
σs

t
)





1
t


 (3.37)

and the joint CDF is given by the multivariate Gumbel distribution

F (x) =
∏

s∈S
φs(xs) = lim

t→∞
exp



−
∑

s∈S





∑

α∈N (s)

exp
(

− xα − µs
σs

t
)





1
t


. (3.38)

Note that the CDN functional form for φs(xs) is a generalization of the bivariate

Gumbel distribution [21] with correlation coefficient η = 1
t
→ 0.

Proof. We begin by noting that min
α∈N (s)

xα can be written as

min
α∈N (s)

xα = lim
t→∞
−1

t
log

∑

α∈N (s)

exp
(

− xαt
)

, (3.39)

so that

F (x) =
∏

s∈S
φs

(

min
α∈N (s)

xα

)

= exp





∑

s∈S
− exp

(

− min
α∈N (s)

xα − µs
σs

)





= exp





∑

s∈S
− exp(− lim

t→∞
−1

t
log

∑

α∈N (s)

exp
(

− xα − µs
σs

t
)





= lim
t→∞

exp



−
∑

s∈S





∑

α∈N (s)

exp
(

− xα − µs
σs

t
)





1
t


. (3.40)

Chapter 3. Cumulative distribution networks 67

The CDN thus provide a graphical framework with which one can construct multivari-

ate extreme-value distributions in which additional statistical dependence relationships

can be modeled between variables in the model.

Another consequence of the use of graphs to model CDFs is that notions of orderings

of variables can be specified in terms of local functions in the graphical model. We will

now describe this in the following section.

3.5 Stochastic orderings in a cumulative distribution net-

work

The CDN, in providing a graphical model for the joint CDF over many random vari-

ables, also allows one to easily specify stochastic ordering constraints between subsets of

variables in the model (Section 2.2). Using the graphical framework of CDNs, we can

specify such constraints for variables XA,XB by constraining the appropriate neighbor-

ing function nodes for the variable node sets A and B in the CDN. We will focus here

on first-order stochastic ordering constraints [43, 62] of the form X � Y and how one

can specify such constraints in terms of the CDN functions in the model. We note that

such constraints are not a necessary part of the definition for a CDN or for a multivariate

CDF, so that the graph for the CDN alone does not allow one to inspect stochastic or-

dering constraints based on graph separation of variables. However, the introduction of

stochastic ordering constraints, in combination with separation of variables with respect

to the graph, do impose constraints on the products of CDN functions, as we will now

show.

Proposition 3.5.1. Let G = (V, S, E) be a CDN, with A,B ⊂ V so thatA = {α1, · · · , αK}

and B = {β1, · · · , βK} for some strictly positive integer K. Let t ∈ ℝ
K . Then A,B sat-

Chapter 3. Cumulative distribution networks 68

isfy the stochastic ordering relationship XA � XB if and only if

∏

s∈N (A)

lim
uN (s)\A→∞

φs(uN (s)\A, tN (s)∩A) ≥
∏

s∈N (B)

lim
uN (s)\B→∞

φs(uN (s)\B, tN (s)∩B) (3.41)

for all t ∈ ℝ
K .

The above can be readily obtained by marginalizing over variables in V \ A, V \ B

respectively to obtain expressions for F (xA), F (xB) as products of CDN functions. The

corresponding ordering then holds from Definition 2.2.2 if and only if FXA(t) ≥ FXB (t)

for all t ∈ ℝ
K .

A direct corollary of the above proposition is that we can enforce pairwise stochastic

ordering constraints of the form Xα � Xβ , which we will now present.

Corollary 3.5.2. Let G = (V, S, E) be a CDN in which functions satisfy Lemma 3.1.1

and let α, β ∈ V be two variable nodes in G. Then the stochastic ordering relationship

Xα � Xβ is satisfied if and only if

∏

s∈N (α)

lim
uN (s)\α→∞

φs(t,uN (s)\α) ≥
∏

s∈N (β)

lim
uN (s)\β→∞

φs(t,uN (s)\β) (3.42)

for all t ∈ ℝ.

The above corollary can be readily obtained by marginalizing over variables in V \

α, V \β respectively to obtain expressions for F (xα), F (xβ) as products of CDN functions.

The corresponding ordering then holds from Definition 2.2.2 if and only if Fxα(t) ≥ Fxβ(t)

for all t ∈ ℝ.

3.6 Discussion

We have presented the CDN and sufficient conditions on the functions in the CDN in

order for the CDN to model to a CDF. We have shown that the conditional independence

relationships that follow from graph separation in CDNs are different from the relation-

ships implied by graph separation in Bayesian networks, Markov random fields and factor

Chapter 3. Cumulative distribution networks 69

graph models. The conditional independence properties of CDNs however include those of

bidirected graphs, so that CDNs provide a parameterization for such models. For ordinal

discrete random variables, an additional independence property called min-independence

holds in which two disjoint sets of variables A and B are conditionally independent of

one another if one observes all variables in set C being equal to the minimum element of

the poset.

We presented a representation theorem that allows us to construct a factor graph with

additional latent variables such that any probability obtained by marginalizing out the

additional latent variables satisfies the same conditional independence relationships that

follow from graph separation of nodes in the CDN. We demonstrated that the mapping

from a CDN to a factor graph is generally not one-to-one and generally does not admit a

closed-form expression relating the CDF modeled by the CDN to the probability modeled

by the factor graph. In the special case in which observable variables are constrained

to be equal to the maxima of latent variables in the factor graph, this mapping is one-

to-one and admits a closed form. This then allows us to construct CDNs as graphical

extreme value distributions in which variables in the model correspond to the maxima

over independent latent variables. Finally, we have shown how one can enforce stochastic

ordering constraints amongst variables in the model through constraining products of

CDN functions.

Having defined the CDN and having presented theorems on conditional independence

in CDNs and on converting between a CDN and a factor graph, in the next chapter we

will turn to the problem of inference and how to efficiently compute probabilities.

Chapter 4

The derivative-sum-product algorithm

In the previous chapter, we showed that within the context of a joint CDF, we could com-

pute conditional probabilities of the forms F (xA|ω(xB)), F (xA|xB) and P (xA|ω(xB)), P (xA|xB),

in addition to probabilities of the type P (xA), F (xA). In Bayesian networks, Markov ran-

dom fields and factor graphs, computing such conditional CDFs would generally require

us to integrate over variables, which may be an intractable operation requiring sampling

methods or approximation schemes. However in a CDN, computing such conditionals

is comparatively easier, as we can compute the relevant quantities by differentiating the

joint CDF. In this chapter we will show that if we model the joint CDF using a CDN

with a tree-structured graph, then we can derive a class of message-passing algorithms

called called derivative-sum-product (DSP) for computing derivatives efficiently in CDNs.

Throughout this chapter, we will assume that the sufficient conditions for the CDN func-

tions φs(xs) hold in order for the CDN to model a valid joint CDF (Lemma 3.1.1). We

will further assume that the derivatives/finite differences of CDN functions φs(xs) with

respect to all subsets of argument variables exist and that Proposition 2.1.7 holds for

each function φs so that the order of differentiation does not affect the computation of

any mixed derivatives of functions in the CDN. In the case where we are differentiating

with respect to a set of variables XC that are observed with values xC , we assume that

70

Chapter 4. The derivative-sum-product algorithm 71

the resulting derivative/finite difference is evaluated at the observed values xC . In the

case where we are given a function G(x) defined over a single ordinal discrete variable

x ∈ X with X = {r0, r1, · · · , rN−1} and r0 < r1 · · · < rN−1, ri ∈ ℝ, we define the finite

difference of G with respect to x, evaluated at x as

∂x

[

G(x)
]

=

{

G(r0) if x = r0

G(ri)−G(ri−1) if x = ri, i = 1, · · · , N − 1
(4.1)

4.1 Differentiation in cumulative distribution networks

We first consider the problem of finding the marginal cumulative distribution F (xα) for

particular variable Xα. We note that in the CDN, marginalization is a simple procedure

that involves maximization with respect to the variables in the network, so that if we let

F (x) = F (xα,xV \α) =
∏

s∈N (α)

φs(xα,xN (s)\α)
∏

s/∈N (α)

φs(xs), (4.2)

then the marginal CDF for Xα is given by

F (xα) = lim
xV \α→∞

F (xα,xV \α) =
∏

s∈N (α)

φs(xα,∞)
∏

s/∈N (α)

φs(∞) =
∏

s∈N (α)

φs(xα,∞). (4.3)

Thus for any xα, we can obtain any distribution of the type F (xA) in time O(|S||V |) by

taking the product of limits of functions lim
xN (s)\α→∞

φs(xα,xN (s)\α) = φs(xα,∞). Further-

more, from Theorem 2.1.4, we can compute any conditional cumulative distribution of

the type F (xA|ω(xB)) in the same fashion by marginalizing the joint CDF over variables

in V \A∪B. Note that the above marginalization contrasts with the problem of exact in-

ference in density models, where potentially intractable marginalization operations must

be performed locally for each variable node in order to obtain the desired marginals.

Although obtaining marginals in the CDN is relatively simple, computing probability

distributions of the form F (xA|xB), P (xA|ω(xB)), P (xA|xB) and P (xA) is more involved.

We have seen previously that in order to compute conditional CDFs, we must compute

Chapter 4. The derivative-sum-product algorithm 72

corresponding higher-order derivatives with respect to these observed variables. For-

tunately, computing derivatives is generally tractable compared to the marginalization

operation in probability densities. Since the factorization of the joint CDF modeled by

a CDN consists of a product of local functions φs(xs), the intuition here is that we can

distribute the differentiation operation to local function nodes in the graph such that

each one computes the derivatives with respect to local variables and passes the result

to its neighbors. Our derivation here is analogous to the derivation for the sum-product

algorithm, but with the summation operator replaced by the differentiation operator.

To begin, let G = (V, S, E) be a tree-structured CDN and suppose we wish to compute

the joint probability P (x) and evaluate it at observation x. We note that we can root

the graph at some node α and we can write the joint CDF as

F (x) =
∏

s∈N (α)

Ts
(

xταs

)

, (4.4)

where xταs denotes the vector of configurations for all variables in the subtree ταs rooted

at variable node α and containing function node s (Figure 4.1), and Ts
(

xταs

)

corresponds

to the product of all functions located in the subtree ταs .

Now suppose we are interested in computing the probability

P (x) = ∂x

[

F (x)
]

= ∂x





∏

s∈N (α)

Ts
(

xταs

)



. (4.5)

Here, we take advantage of the fact that the graph has a tree structure, so that

∂x





∏

s∈N (α)

Ts
(

xταs

)



 = ∂xα





∏

s∈N (α)

∂xταs \α

[

Ts
(

xταs

)

]



 = ∂xα





∏

s∈N (α)

µs→α
(

xταs

)



, (4.6)

where we have introduced the set of functions µs→α(x) ≡ µs→α
(

xταs

)

, each defined by

µs→α(x) ≡ µs→α
(

xταs

)

= ∂xταs \α

[

Ts
(

xταs

)

]

(4.7)

and we have assumed that each of the derivatives/finite differences have been evaluated

at the desired values xταs \α. By its definition, µs→α(x) only depends on variables in the

subtree ταs and corresponds to the higher order derivative of the joint CDF with respect

Chapter 4. The derivative-sum-product algorithm 73

Figure 4.1: Example of the subtrees ταs , τ
s
β for a tree-structured CDN given by the graph G.

to variables in the subtree ταs \ α. We can thus view the function µs→α(x) as a message

being passed from function node s to neighboring variable node α.

We can now write Ts
(

xταs

)

as a product of functions owing to the tree structure of

the graph G, so that

Ts
(

xταs

)

= φs(xα,xN (s)\α)
∏

β∈N (s)\α
Tβ

(

xτs
β

)

, (4.8)

where xτs
β

denotes the vector of configurations for all variables in the subtree τ sβ that is

rooted at function node s and contains node β (Figure 4.1), and Tβ is the product of all

functions in the subtree τ sβ . Substituting Equation (4.8) into Equation (4.7), we obtain

µs→α(x) ≡ µs→α
(

xταs

)

= ∂xταs \α



φs(xα,xN (s)\α)
∏

β∈N (s)\α
Tβ

(

xτs
β

)



 (4.9)

= ∂xN (s)\α



φs(xα,xN (s)\α)
∏

β∈N (s)\α
∂xτs

β
\β

[

Tβ

(

xτs
β

)]



 (4.10)

= ∂xN (s)\α



φs(xα,xN (s)\α)
∏

β∈N (s)\α
µβ→s

(

xτs
β

)



, (4.11)

Chapter 4. The derivative-sum-product algorithm 74

where we have defined the message µβ→s(x) ≡ µβ→s

(

xτs
β

)

from variable node β to

neighboring function node s. Similar to the definition for µs→α(x), the message µβ→s(x)

only depends on variables in the subtree τ sβ and corresponds to the higher order derivative

of the joint CDF with respect to variables in the subtree τ sβ \ β.

Finally, to compute the message µβ→s(x) from variable node β to function node s,

we can write each of the functions Tβ
(

xτs
β

)

as a product such that

Tβ
(

xτs
β

)

=
∏

s′∈N (β)\s
Ts′
(

xτβ
s′

)

, (4.12)

where Ts′ is defined identically to Ts above but for function node s′. Substituting this

into the expression for µβ→s(x) in Equation (4.11) yields

µβ→s(x) = ∂xτs
β
\β

[

Tβ
(

xτs
β

)

]

=
∏

s′∈N (β)\s
∂x
τ
β

s′
\β

[

Ts′
(

xτβ
s′

)

]

(4.13)

=
∏

s′∈N (β)\s
µs′→β(x). (4.14)

Thus, to compute messages from variables to functions, we simply take the product

of all incoming messages except for the message coming from the destination function

node. As in the sum-product algorithm, variables with only two neighboring functions

simply pass messages through unchanged. We see here that the process of differentiation

in a CDN can be implemented as an algorithm in which we pass messages µα→s from

variables to neighboring function nodes and messages µs→α from functions to neighboring

variable nodes. Messages can be computed recursively from one another: we start from

an arbitrary root variable node α and propagate messages up from leaf nodes to the

root node. As in the sum-product algorithm, leaf variable nodes α′ send the message

µα′→s(x) = 1 while leaf function nodes φs(xα′) send the message µs→α′(x) = φs(xα′).

The message-passing algorithm proceeds until messages have been propagated along

every edge in the network and the root variable node has received all incoming messages

Chapter 4. The derivative-sum-product algorithm 75

from the remainder of the network. Once all messages have been sent, we can obtain

the probability of the variables in the graph from differentiating the product of incoming

messages at the root node α, so that

P (x) = ∂xα





∏

s∈N (α)

µs→α(x)



. (4.15)

To illustrate the above message-passing algorithm, consider the following toy example.

Example 4.1.1. Consider the toy example of a CDN over four random variables U,X, Y, Z

from Figure 4.2. The joint CDF is given by F (u, x, y, z) = g(u, x, y)h(y, z). Let Z be the

Figure 4.2: Flow of messages in the toy example of CDN defined over variables X,Y,Z,U .

root node so that X and U are leaf nodes. Then the messages from leaves to root are

given by

µX→g(x) = 1

µU→g(u) = 1

µg→Y (y; u, x) = ∂u,x

[

g(u, x, y)µX→g(x)µU→g(u)
]

µY→h(y; u, x) = µg→Y (y; u, x)

µh→Z(z; u, x, y) = ∂y

[

h(y, z)µY→h(y; u, x)
]

,

where derivatives are computed at locally before being propagated to the next node in

the graph. Figure 4.2 shows the flow of the above messages.

Once we have propagated messages from the leaf nodes to the root node, we can

Chapter 4. The derivative-sum-product algorithm 76

evaluate the joint probability P (u, x, y, z) = ∂z

[

µh→Z(z; u, x, y)
]

at the root node so that

P (u, x, y, z) = ∂z

[

µh→Z(z; u, x, y)
]

= ∂z

[

∂y

[

h(y, z)µY→h(y; u, x)
]]

= ∂z

[

∂y

[

h(y, z)µg→Y (y; u, x)
]]

= ∂z

[

∂y

[

h(y, z)∂u,x

[

g(u, x, y)µX→g(x)µU→g(u)
]]]

= ∂x,y,z,u

[

g(u, x, y)h(y, z)
]

= ∂x,y,z,u

[

F (u, x, y, z)
]

. (4.16)

The above example illustrates the fact that if the graph topology is a tree, then

the message-passing algorithm yields the correct mixed derivatives with respect to each

variable in the CDN so that we obtain the joint probability P (x) at the root node α

according to Equation (4.15).

4.2 Inference in cumulative distribution networks

Thus far we have presented an algorithm for computing derivatives of the joint CDF

in order to obtain the joint PDF/PMF P (x). In this section we will demonstrate the

correspondence between computing higher order derivatives and the problem of inference

in a CDN. The relation between differentiation and inference in CDNs is analogous to the

relation between marginalization and inference in factor graphs. Thus, just as the sum-

product algorithm allows one to compute distributions of the type P (xA|xB), message-

passing in a CDN allows us to compute conditional distributions of the form F (xA|xB)

and P (xA|xB) for disjoint sets A,B ⊂ V .

In order to compute conditional distributions of the above types, we will assume

that when computing a conditional distribution such as F (xA|xB) or P (xA|xB), we

have P (xB) = ∂xB

[

F (xB)
]

> 0. Now consider the problem of computing the quan-

tity F (xA|xB). We can write this as

Chapter 4. The derivative-sum-product algorithm 77

F (xA|xB) =
∂xB

[

F (xA,xB)
]

∂xB

[

F (xB)
] =

lim
xV \(A∪B)→∞

∂xB

[

F (x)
]

lim
xV \B→∞

∂xB

[

F (x)
] =

∂xB



 lim
xV \(A∪B)→∞

F (x)





∂xB



 lim
xV \B→∞

F (x)





∝ ∂xB



 lim
xV \(A∪B)→∞

F (x)



, (4.17)

so that by combining the operations of taking limits and computing derivatives/finite

differences, we can compute any conditional probability of the form F (xA|xB). To com-

pute the conditional CDF for any variable node in the network, we can pass messages

from leaf nodes to root and then from the root node back to the leaves. For any given

variable node, we can then multiply all incoming messages to obtain the conditional CDF

for that variable, up to a scaling factor. We will now demonstrate this principle using

the previous toy example CDN.

Figure 4.3: Flow of messages in the toy example CDN of Figure 4.2 with variable U marginal-

ized out in order to compute the conditional CDF F (y|x, z).

Example 4.2.1. Consider the toy example of a CDN over four random variables U,X, Y, Z

from Figure 4.2. Suppose we wish to compute F (y|x, z) = lim
u→∞F (u, y|x, z). This is equiv-

alent to message-passing in a CDN defined over variables X, Y, Z with U marginalized

out (Figure 4.3) so that g̃(x, y) = lim
u→∞ g(u, x, y). Thus the message updates are given by

µX→g̃(x) = 1, µg̃→Y (y; x) = ∂x

[

g̃(x, y)µX→g̃(x)
]

= ∂x

[

g̃(x, y)
]

µZ→h(z) = 1, µh→Y (y; z) = ∂z

[

h(y, z)µZ→h(z)
]

= ∂z

[

h(y, z)
]

. (4.18)

Chapter 4. The derivative-sum-product algorithm 78

Once we have computed the above messages, we can evaluate the conditional CDF

F (y|x, z) at node Y as

F (y|x, z) =
µg̃→Y (y; x)µh→Y (y; z)

Z =
∂z

[

h(y, z)
]

∂x

[

g̃(x, y)
]

Z . (4.19)

Note that the normalizing constant Z can be readily obtained by computing

Z = lim
y→∞ ∂z

[

h(y, z)
]

∂x

[

g̃(x, y)
]

= ∂x,z

[

lim
y→∞h(y, z)g̃(x, y)

]

, (4.20)

so that

F (y|x, z) =
µg̃→Y (y; x)µh→Y (y; z)

Z =
∂z

[

h(y, z)
]

∂x

[

g̃(x, y)
]

∂x,z

[

lim
y→∞h(y, z)g̃(x, y)

] =
lim
u→∞ ∂z

[

h(y, z)
]

∂x

[

g̃(u, x, y)
]

∂x,z

[

lim
u,y→∞h(y, z)g̃(u, x, y)

]

=
∂x,z

[

lim
u→∞F (u, x, y, z)

]

∂x,z

[

lim
u,y→∞F (u, x, y, z)

] . (4.21)

The above example shows that the message-passing algorithm can be used to com-

pute conditional CDFs of the form F (xA|xB), up to a normalizing constant Z. We

can readily obtain distributions of the type and P (xA|xB) from F (xA|xB) by comput-

ing ∂xA

[

F (xA|xB)
]

using the above message-passing scheme and then multiplying mes-

sages together to obtain conditional CDFs. We note that computing the normalizing

constant Z can be viewed as the result of message-passing in a CDN in which the vari-

ables XA have been marginalized out in addition to variables XV \A∪B and then evalu-

ating the resulting messages at the observed values xB. Equivalently, one can compute

Z = lim
xA→∞

∂xB

[

F (xA,xB)
]

after message-passing with only variables in V \ (A ∪ B)

marginalized out.

Chapter 4. The derivative-sum-product algorithm 79

4.3 Derivative-sum-product: A message-passing algorithm

for inference in cumulative distribution networks

Equations (4.11) and (4.14) together define the set of messages that allow us to compute

the higher order mixed derivative of the joint CDF. Because the fundamental operations

required for message-passing consist of differentiation/finite differences, sums and prod-

ucts, we will refer to the corresponding class of algorithms as the derivative-sum-product

(DSP) algorithm. For CDNs defined over discrete variables, the DSP algorithm is shown

in Table 4.1. As can be seen, for graphs defined over discrete variables, the DSP algo-

rithm is analogous to the sum-product algorithm with the summation operation replaced

by a finite difference operation. While the DSP algorithm for discrete variable networks

has the same order of complexity as the sum-product algorithm, the required complexity

increases for CDNs defined over continuous variables. For such models, we are required

to invoke the product rule of differential calculus in order to express these messages in

terms of the derivatives of CDN functions and combinations thereof. To this end, we

can define two additional sets of messages λα→s(x) and λs→α(x) that correspond to the

quantities ∂xα

[

µα→s(x)
]

and ∂xα

[

µs→α(x)
]

respectively. We first derive the expression for

λα→s(x) by applying the product rule of differential calculus to Equation (4.14), bearing

in mind that each of the messages µs→α(x) ≡ µs→α
(

xταs

)

depends on variable Xα. This

yields

λα→s(x) = ∂xα

[

µα→s(x)
]

= ∂xα





∏

s′∈N (α)\s
µs′→α(x)



 = µα→s(x)
∑

s′∈N (α)\s

λs′→α(x)

µs′→α(x)
.

(4.23)

In order to derive the general expressions for µα→s(x) , λα→s(x), we first note that for

any two differentiable multivariate functions f(x), g(x), the product rule for computing

the higher order derivative of a product of functions is given by

∂y

[

f(y)g(y)
]

=
∑

yA⊆y

∂yA

[

f(y)
]

∂y\yA

[

g(y)
]

. (4.24)

Chapter 4. The derivative-sum-product algorithm 80

In the context of computing messages µs→α(x), λs→α(x) from Equation (4.11), applying

the above product rule yields

µs→α(x) = ∂xN (s)\α



φs(xα,xN (s)\α)
∏

β∈N (s)\α
µβ→s(x)





=
∑

B⊆N (s)\α
∂xB

[

φs(xs)
]

∏

β∈B
µβ→s(x)

∏

β∈N (s)\{α∪B}
λβ→s(x) (4.25)

λs→α(x) = ∂xα

[

µs→α(x)
]

=
∑

B⊆N (s)\α
∂xB ,xα

[

φs(xs)
]

∏

β∈B
µβ→s(x)

∏

β∈N (s)\{α∪B}
λβ→s(x), (4.26)

where we have made use of the tree-structure of the CDN to write the derivative of a

product of messages as a product of derivatives of the messages. The above updates

then define the DSP algorithm for CDNs defined over continuous variables, with a total

of four sets of messages defined solely in terms of the CDN functions, their derivatives

and linear combinations thereof. The message-passing algorithm for continuous CDNs is

summarized in Table 4.2 and is illustrated in Figure 4.4.

(a) (b)

Figure 4.4: a) Computation of the message from a function node s to a variable node α; b)

Computation of the message from a variable node α to a function node s.

We see from Table 4.2 that the DSP algorithm grows exponentially in complexity

as the number of neighboring variable nodes for any given function increases, as the

updates at function nodes require one to perform a sum over all subsets of neighboring

variables. However, in many cases the computational complexity will be tractable for

Chapter 4. The derivative-sum-product algorithm 81

sparser graphs, as demonstrated by the following example.

Figure 4.5: The DSP algorithm for a chain-structured CDN with continuous variables.

Example 4.3.1 (Derivative-sum-product on a linear first-order chain CDN). Consider

the CDN defined over K continuous variables such that the joint CDF over these variables

is given by

F (x) =
K−1
∏

k=1

φk(xk, xk+1), (4.28)

so that the variable nodes are connected in the chain-structured graph shown in Figure

4.5. In this case, the DSP messages can be written simply as

µk+1(x) ≡ µφk→Xk+1
(x)

= ∂xk

[

φk(xk, xk+1)
]

µk(x) + φk(xk, xk+1)λk(x), k = 1, · · · , K − 1

λk+1(x) ≡ λφk→Xk+1
(x)

= ∂xk,xk+1

[

φk(xk, xk+1)
]

µk(x) + ∂xk+1

[

φk(xk, xk+1)
]

λk(x), k = 1, · · · , K − 1.

(4.29)

Example 4.3.2 (Sampling from a cumulative distribution network). We can further

take advantage of the derivative-sum-product algorithm for generating samples from the

CDF modeled by a CDN. We can proceed as follows: arbitrarily select a variable in the

model, say X1. Then, generate a sample x∗1 from its marginal CDF F (x1) (obtained

by marginalizing out all other variables). Given x∗1, we can then proceed to generate

samples for its children by marginalizing out all other unobserved variables and then

sampling from the conditional distribution F (x2|x∗1). We can continue this way until we

have sampled a complete configuration x∗ = [x∗1, · · · , x∗K]. The algorithm for sampling

from the joint CDF modeled by a CDN is then given by

Chapter 4. The derivative-sum-product algorithm 82

• Pick a sampling ordering X1, X2, · · · , XK ,

• For variable Xk, k = 1, · · · , K, compute

F (x1, · · · , xk) = lim
xk+1,··· ,xK→∞

F (x1, · · · , xk, xk+1 · · · , xK). (4.30)

• Sample x∗k from

F (xk|x1, · · · , xk−1) =
∂x1,··· ,xk−1

[

F (x1, · · · , xk)
]

lim
xk→∞

∂x1,··· ,xk−1

[

F (x1, · · · , xk)
] . (4.31)

From the above we see that if the CDN has a tree structure, then we can compute

the conditional CDFs F (xk|x1, · · · , xk−1) exactly via DSP. In the case of a CDN with

cycles, we can always convert it to one with a tree structure by clustering variables and

corresponding function nodes, as can be done in the case of factor graphs [41]. This

generally incurs an increase in function node complexity, but with the benefit of being

able to sample from the joint CDF defined by the CDN and not from an approximation

thereof.

4.4 Complexity of inference in cumulative distribution

networks and factor graphs

What is the relative computational complexity of message-passing in a CDN as compared

to message-passing in a factor graph constructed using the procedure described in The-

orem 3.4.1? When both the CDN and factor graph are defined over discrete variables,

message-passing in either the CDN or graph will have similar computational complexity.

This can be seen from the construction of the factor graph using the procedure outlined

in Theorem 3.4.1, where we add a latent variable for each function node in the CDN

in addition to a factor node for each variable in the CDN. However, for certain CDNs,

the addition of latent variables in the factor graph will require additional computations

Chapter 4. The derivative-sum-product algorithm 83

(a) (b)

Figure 4.6: Comparative cost of inference in a) a CDN and b) a factor graph using DSP and

sum-product. The DSP algorithm here requires less floating point operations due to a simplified

graphical model for the joint probability over observable variables (blue nodes), whereas sum-

product requires additional computations due to the introduction of additional latent variables

(red nodes).

in order to propagate all messages, whereas the CDN model for the joint probability

will have fewer variables in the graph and so may simplify the number of computations

needed. As a simple example of this, consider the following example of a CDN defined

over discrete variables and its factor graph obtained from Theorem 3.4.1.

Example 4.4.1. Consider the CDN and the factor graph that are related according to

Theorem 3.4.1 and are shown in Figure 4.6(a) and 4.6(b), where both models are defined

over |S|+1 ordinal discrete random variables, where |S| is the number of functions in the

CDN graph. Suppose we are given a set of observed configurations for the model variables,

which we will denote by x ∈ X |V | and suppose we then wish to compute all messages

in the sum-product and DSP algorithms in the factor graph and CDN respectively. For

ease of discussion, suppose that x > 0 so that min-independence does not hold in the

CDN and so the joint probabilities modeled by the two graphs satisfy identical sets of

conditional independence relationships amongst model variables.

Now let Y = {Ys : s ∈ S} denote the set of latent variables introduced in the factor

graph according to Theorem 3.4.1 and let Yα = {Ys : s ∈ N (α)}. The joint probability

Chapter 4. The derivative-sum-product algorithm 84

P (x,y) modeled by the factor graph can then be written as

P (x,y) =
∏

α∈V



P (xα|yα)
∏

s∈N (α)

P (ys)



 =
∏

α∈V
fα(xα,yα), (4.32)

so as to not introduce additional factor nodes into the factor graph model for P (x,y).

Suppose the state space of all discrete variables in the model is L. In order to compute

all messages in the CDN, one needs to perform L multiplications for each function node

in order to multiply an incoming message with the function node and L subtractions per

function node in order to compute the finite difference. When considering messages being

passed in both directions, this yields a total of 2 · |S| ·L multiplications and 2 · |S| · (L−1)

additions, as finite differences require only L− 1 subtractions and a subtraction has the

same computational cost as addition. However, in the case of the corresponding factor

graph, if we assume that observable variable nodes pass the message µα→s(xα) = 1, the

total number of multiplications then increases to 4 · (|S| + 1) · L and the number of

additions becomes 3 · (|S|+ 1) ·L in order to compute all messages in the graph. Thus by

constructing a more compact model in the form of a CDN, one can reduce the number

of additions and multiplications required in order to compute messages as compared to

the amount of computation for the corresponding factor graph.

For graphs defined over continuous variables, the comparison becomes less straight-

forward, as computational complexity will be dominated both by graph connectivity and

the complexity of differentiation/marginalization for the CDN and the corresponding

factor graph. In the case of DSP, the computational complexity will be dominated by

the number of neighboring variables for each function node in the CDN, as the DSP

update at a function node requires one to sum over all subsets of neighboring variables.

However, in the case of sparsely-connected tree-structured CDNs, it will be possible to

compute P (x) exactly with relatively low computational cost via DSP, whereas doing

this in the corresponding factor graph may require either approximating the messages

using methods such as expectation propagation [50] or the use of Markov Chain Monte

Carlo sampling methods [53]. In general, the CDN will have the advantage of containing

Chapter 4. The derivative-sum-product algorithm 85

only observable variables, whereas in a factor graph one will have to marginalize out

additional latent variables, despite the fact that one has the freedom to select the latent

variables to be either continuous or discrete with many possible numbers of states.

4.5 Discussion

We have presented the derivative-sum-product algorithm for computing derivatives in a

CDN. We have shown that the algorithm is an analog of the sum-product algorithm in

factor graphs, so that for tree-structured graphs the algorithm yields exact derivatives

of the joint CDF. For graphs defined over continuous variables, the DSP algorithm can

be implemented through two sets of messages in order to compute the higher order

derivatives of the joint CDF. While we have presented the DSP algorithm for computing

derivatives given a set of CDN functions, we have not addressed here the issue of how to

learn these CDN functions from data. A possible method would be to run DSP to obtain

the joint PDF and then maximize this with respect to model parameters. Another issue

we have not addressed is how to perform inference in graphs with cycles: an interesting

future direction would be to investigate exact or approximate methods for doing so and

connections to methods in the literature [50, 53] for doing this in traditional graphical

models. We will further discuss these issues in the concluding chapter.

Having defined the CDN and having described the DSP algorithm, we will now pro-

ceed to apply both of these to the general problem of learning to rank from examples.

As we will see, the ability to model a joint CDF using a graphical framework will yield

advantages in both representation and computation for this class of problems.

Chapter 4. The derivative-sum-product algorithm 86

• For each leaf variable node α′ and for all function nodes s ∈ N (α′), propagate

µα′→s(x) = 1. For each leaf function node with function φs(xα′), send the messages

µs→α′(x) = φs(xα′).

• (Messages from variables to functions) For each non-leaf variable node α and neigh-

boring function nodes s ∈ N (α),

µα→s(x) =
∏

s′∈N (α)\s
µs′→α(x).

• (Messages from functions to variables) For each non-leaf function node s and neigh-

boring variable nodes α ∈ N (s),

µs→α(x) = ∂xN (s)\α



φs(xs)
∏

β∈N (s)\α
µβ→s(x)



.

• For root node α ∈ V , pass messages from α to leaf nodes according to above.

• For each node α ∈ V , compute the conditional CDF F (xα|xV \α) as

F (xα|xV \α) ∝
∏

s∈N (α)

µs→α(x) (4.22)

Table 4.1: The derivative-sum-product (DSP) algorithm for inference in a CDN defined over

discrete variables.

Chapter 4. The derivative-sum-product algorithm 87

• For each leaf variable node α′ and for all function nodes s ∈ N (α′), propagate

µα′→s(x) = λα′→s(x) = 1. For each leaf function node with function φs(xα′), send

the messages µs→α′(x) = φs(xα′), λs→α′(x) = ∂xα′

[

φs(xα′)
]

.

• (Messages from variables to functions) For each non-leaf variable node α and neigh-

boring function nodes s ∈ N (α),

µα→s(x) =
∏

s′∈N (α)\s
µs′→α(x),

λα→s(x) = ∂xα

[

µα→s(x)
]

= µα→s(x)
∑

s′∈N (α)\s

λs′→α(x)

µs′→α(x)
.

• (Messages from functions to variables) For each non-leaf function node s and neigh-

boring variable nodes α ∈ N (s),

µs→α(x) =
∑

B⊆N (s)\α
∂xB

[

φs(xs)
]

∏

β∈B
µβ→s(x)

∏

β∈N (s)\{α∪B}
λβ→s(x),

λs→α(x) = ∂xα

[

µs→α(x)
]

=
∑

B⊆N (s)\α
∂xB ,xα

[

φs(xs)
]

∏

β∈B
µβ→s(x)

∏

β∈N (s)\{α∪B}
λβ→s(x).

• For root node α ∈ V , pass messages from α to leaf nodes according to above.

• For each node α ∈ V , compute the conditional CDF F (xα|xV \α) as

F (xα|xV \α) ∝
∏

s∈N (α)

µs→α(x) (4.27)

Table 4.2: The derivative-sum-product (DSP) algorithm for inference in a CDN defined over

continuous variables.

Chapter 5

Learning to rank with cumulative

distribution networks

In this chapter, we will apply CDNs and the DSP algorithm to problems of structured

ranking learning in which the goal is to learn a model for ranking objects from many

examples of orderings. In such applications, the CDF arises as a probability measure

defined over multiple inequality events of the form X ≤ x with various statistical depen-

dence relationships between events. The problem of structured ranking learning therefore

consists of constructing a ranking model using training data whereby we wish to account

for the structure, or the presence of statistical dependence relationships, between model

variables.

Here we will demonstrate the advantage of modelling a joint CDF using the graphical

modelling framework provided by CDNs, whereby we will be able to A) simplify the

modelling of large CDFs, B) model both the notion of ordering and statistical dependence

relationships between variables in the model and C) perform computations for inference

and estimation in a tractable fashion. Before we proceed, we will first review some

additional concepts and techniques that will be used throughout the chapter.

88

Chapter 5. Learning to rank with cumulative distribution networks 89

5.1 Background

5.1.1 Ordinal regression

In many domains, one is faced with the problem of estimating multinomial variables that

can each take one of a finite number of values in some discrete set X = {r1, · · · , rK} for

some integer K. Such multinomial variables can then be distinguished as being of the

type

• Nominal, or categorical, so that the set X does not admit an ordering of variable

values.

• Ordinal, so that the set X admits a total ordering over variable values of the type

r1 ≺ · · · ≺ rK .

An example of a nominal variable is music type, such as X = {rock, electronica, jazz}

and an example of an ordinal variable is a grading scheme X = {A,B,C,D} so that the

possible variable values satisfy the total ordering D ≺ C ≺ B ≺ A.

In ordinal regression, the goal is to predict a discrete variable y ∈ {r1, · · · , rK} given

a set of features x, where r1 ≺ · · · ≺ rK are an ordered set of labels. Unlike the general

problem of multiclass classification in which variables to be predicted are nominal, output

labels in the setting of ordinal regression are not permutation-invariant and so any model

for the problem should account for the orderings of the output variable values.

One model for performing ordinal regression is the cumulative model [48], which relates

an input vector x to an ordinal output y via a function f and a set of cutpoints θ(r1) <

· · · < θ(rK) along the real line ℝ so that y = rk if θ(rk−1) < f(x) + ǫ ≤ θ(rk), where

ǫ is additive noise and we define θ(r0) = −∞, θ(rK) = ∞ (Figure 5.1). If P (ǫ) is the

Chapter 5. Learning to rank with cumulative distribution networks 90

probability density function from which the noise variable ǫ is drawn, then we can write

ℙ

[

y = rk
]

= ℙ

[

θ(rk−1) < f(x) + ǫ ≤ θ(rk)
]

= ℙ

[

{θ(rk−1)− f(x) < ǫ} ∩ {ǫ ≤ θ(rk)− f(x)}
]

= Fǫ(θ(rk−1)− f(x))− Fǫ(θ(rk)− f(x)), (5.1)

where Fǫ ≡ F (ǫ) is the corresponding cumulative distribution function for P (ǫ). The

above equation defines a likelihood function for a given observed pair (x, y), so that the

cutpoints θ(rk) and the regression function f(x) can subsequently be estimated from

training data by maximizing the likelihood function with respect to the cutpoints θ(rk)

and the regression function f(x).

Figure 5.1: An illustration of the ordinal regression model. A given point has label y = rk if

θ(rk−1) < f(x) + ǫ ≤ θ(rk), where ǫ is a noise variable.

5.1.2 Nadaraya-Watson estimators

Suppose we are given some finite sample D of pairs (xn, yn) for n = 1, · · · , N , where

yn ∈ ℝ is related to xn ∈ ℝ
L via

yn = f(xn) + ǫn (5.2)

and E[ǫn] = 0. A popular method for estimating f(x) is the Nadaraya-Watson estimator,

which we define below.

Chapter 5. Learning to rank with cumulative distribution networks 91

Definition 5.1.1 (Nadaraya-Watson estimator). The Nadaraya-Watson estimator [52,

67] is the following function f̂(x) obtained from samples (xn, yn):

f̂(x) =

N
∑

n=1

K(x,xn)yn

N
∑

n=1

K(x,xn)

, (5.3)

where K is any kernel function.

Thus, the estimate of the function value f(x) at x consists of a weighted sum of

sample values yn, where the weights are given by the kernel function K(x,xn). The

kernel function can be chosen from a broad class of kernels: in this thesis we will focus

primarily on Gaussian kernels of the form

K(u,v; A) = exp
(

− 1

2
(u− v)TA(u− v)

)

(5.4)

for some bandwidth matrix A. In the simple case where A = diag(a1, · · · , aL) is diagonal

with al > 0, l = 1, · · · , L, we have

K(u,v; A) =
L
∏

l=1

K(ul, vl; al) = exp
(

− 1

2

∑

l

al(ul − vl)2
)

, (5.5)

where al are bandwidth parameters that determine the smoothness of the resulting esti-

mator. An example of such an estimator for discrete labels yn with a Gaussian kernel for

one-dimensional inputs xn is shown in Figure 5.2, where the Gaussian kernel is defined

by a single bandwidth parameter a. For a more thorough discussion of the properties of

such estimators, we refer the reader to [52, 67].

5.1.3 Gradient-based methods for learning

In statistical machine learning, the problem of learning a parametric model from data

D is usually formulated as a problem of optimizing some loss functional L(θ;D) of the

model with respect to some parameter set θ under some possible constraints on θ. Given

a finite sample D = {D1, · · · , DN} and under the assumption that samples are drawn

Chapter 5. Learning to rank with cumulative distribution networks 92

−3 −2 −1 0 1 2 3
−1

1

3

5

7

9

11

x
y

Figure 5.2: Synthetic data generated from an ordinal regression model whereby yn = k if

θ(k − 1) < f(xn) + 2ǫ ≤ θ(k) for k = 1, · · · , 10 and θ(k) = k for k = 1, · · · , 9 and θ(0) =

−∞, θ(10) = ∞, where the function f(x) = 10 sin2(0.8x) + 10 sin(0.1x) and ǫ is a Gaussian

random variable with zero mean and unit variance for n = 100. The Nadaraya-Watson estimator

f̂(x) is shown in blue, with a single bandwidth parameter a selected by cross-validation using

squared loss L(a) =
∑

n(yn − f̂(xn; a))2. The true function f(x) is shown as the black dotted

line.

independently from some probability distribution, the loss functional can often be ex-

pressed as

L(θ;D) ≡
N
∑

n=1

L(θ;Dn), (5.6)

where L(θ;Dn) is the loss incurred on data sample Dn. Assuming that a (sub-)gradient

∇θL of the loss functional L(θ;D) can be computed and evaluated at each data sample

Dn, the problem of learning can then be solved by iterative gradient descent methods

in which we begin with an initial estimate for θ and then iteratively update θ using

the (sub-)gradient ∇θL. We will now proceed to describe two classes of such learning

algorithms that are often used: the reader is encouraged to refer to [6] for a more detailed

discussion.

Chapter 5. Learning to rank with cumulative distribution networks 93

Batch gradient descent methods

In batch gradient descent methods, one iteratively updates the parameter vector θt at

iteration t of the algorithm for t = 1, · · · , T using the rule

θt+1 = θt − η
N
∑

n=1

∇θL(θ;Dn), (5.7)

where the learning rate or step size η > 0 determines the amount by which θ is updated.

Batch gradient descent methods have been widely studied and have been shown to con-

verge to some local optimum of the loss functional provided that η is small enough. Note

that each update above requires us to compute the gradient ∇θL(θ;Dn) for each data

sample Dn and then sum each of these gradients over the entire dataset D in order to

perform one update of the parameter vector θ. This requires storing all data samples at

runtime, which may become impractical for large datasets. A fast and efficient alternative

is to perform updates using only one data point at a time, as we will now show.

Stochastic gradient descent methods

In the stochastic gradient descent method, one iteratively updates the parameter vector

θn using the rule

θt+1 = θt − η∇θL(θ;Dn), n = 1, · · · , N, t = 1, · · · , N. (5.8)

We can also repeat the above rule for several epochs or passes through the training data

samples. Thus, instead of summing over the entire training set D and then performing an

update, one cycles through the data samples one by one and computes the gradient for

any given sample in order to performs a single update. In contrast to the batch method

for gradient descent, this does not require us to store the entire training set in memory,

allowing for a smaller memory footprint and fast updates that depend only on individual

data samples. Two further advantages of this approach are that the stochastic nature of

the updates may allow us to avoid local minima of the function being optimized, and that

Chapter 5. Learning to rank with cumulative distribution networks 94

the algorithm is able to find optima faster than the batch method if there is sufficient

redundancy in the data. For example, if one had a dataset consisting of M replications

of a smaller dataset, the batch method would require M times more computations to

find the optima, whereas the stochastic gradient descent method may require far fewer

computations to reach the optima. However, depending on the size of the training set,

several passes through the training data may be required.

We will now proceed to apply the framework of CDNs to the problem of ranking by

considering the problem of learning to rank in multiplayer team-based gaming.

5.2 Application: Learning to rank in multiplayer team-

based games

In this section, we will consider the problem of learning to rank in multiplayer team-based

games, where one observes the scores achieved by several interacting players over many

games t = 1 · · · , T in which players interactively compete for higher ranks in groups, or

teams, that can change with each game. For any given game, players compete in teams

so that at the end of each game, each player will have achieved a score as a result of

actions taken by all players during the game. For example, these player scores could

correspond to the number of targets destroyed or the number of flags stolen depending

on the game objectives, so that a higher player score reflects a better performance for

that player and for the given game objectives. Here we will define a game Γt as a triplet

(Pt, Tt,Ot), where Pt ⊂ P is a subset of the set P of all players and Tt is a partition

of Pt into sets corresponding to teams for game Γt, so that if Tt = {T 1
t , · · · , T Nt } then

there are N teams for game Γt and player k ∈ Pt is assigned to team n for game Γt

if and only if k ∈ T nt . For example, a game involving six players labelled 1, 2, 3, 4, 5, 6

organized into three teams of two players each could correspond to Pt = {1, 2, 3, 4, 5, 6}

and Tt = {{1, 2}, {3, 4}, {5, 6}}. Without loss of generality we will label the teams in a

Chapter 5. Learning to rank with cumulative distribution networks 95

game by n = 1, · · · , N where each team corresponds to a set in the partition Tt.

In addition to the above, we will denote by Ot the outcome of a game that consists

of the pair (xPt , rTt), where xPt ∈ ℝ
|Pt| is a vector of player scores for game Γt and the

set rTt is defined as an ordered set of team performances, or set of ranks for each team.

Such ranks are obtained by first computing the sum of the player scores for each team

n = 1, · · · , N , and then ranking the teams by sorting the resulting sums. We will refer

to these sums in the sequel as the team scores tn. An example of this for the previous

example of a game with six players assigned to three teams is xPt = [30 12 15 25 100 23]T ,

so that rTt = {2, 1, 3} is an ordered set of team rankings. We will also denote by

xn ∈ ℝ
|T nt | as the vector of player scores for team n in game Γt. We note at this

juncture that the above definition for a game outcome consists only of player scores and

team performances, although one could extend the definition outcome to include other

player-specific features such as stamina and speed. Furthermore, the team rankings are

a function of unweighted sums of player scores: although there is no reason a priori

to weight the scores of players differently for determining the rank of a team, one could

extend the above scheme for determining team rankings to weight player scores according

to player type or player-specific features.

Given the above, the goal is to construct a model that will allow us to predict the

outcome Ot of the new game before it begins, given Pt and previous game outcomes

O1, · · · ,Ot−1. In particular, we wish to construct a model that will minimize the number

of mis-ordered teams according to the set of team performances rTt for game Γt. Here,

the probability model for the given game should account for the team-based structure of

games, so that the team performances for any game are determined by individual player

scores in that game and a game outcome is determined by the ordering of team scores

and not simply an ordering of individual player scores. We will demonstrate here that

the graphical framework of CDNs makes it straightforward to model both the notion

of ordering of variables in the model as well as statistical independence relationships

Chapter 5. Learning to rank with cumulative distribution networks 96

amongst these variables. In particular, the model we will construct here will be amenable

to exact inference via the DSP algorithm.

5.2.1 Previous work

Recently, [23] presented the TrueSkillTM algorithm for skill rating in Halo 2TM, whereby

each player k ∈ Pt is assigned a probability distribution over latent skill variables sk,

which is then inferred from individual player scores over multiple games using the expec-

tation propagation algorithm for approximate inference [50]. Learning of the TrueSkillTM

model thus consists of applying expectation propagation to a factor graph for a given

game in order to update probabilities over player skills. An example of such a factor

graph is shown in Figure 5.3. In TrueSkillTM, the factors connecting team-specific nodes

to one another dictate a constraint on relative differences in the total player scores be-

tween teams, while factors connecting player nodes to their team-specific nodes enforce

the constraint that the team score is determined by the sum of player scores. Finally,

for teams n, n+ 1, there is a difference variable Hn,n+1 and a corresponding factor which

declares a tied rank between two teams if the difference between the two team scores

is below some threshold parameter. Having described the TrueSkill model, we will now

proceed to describe an alternate model formulated using the framework of CDNs.

5.2.2 A cumulative distribution network

for modelling multiplayer game outcomes

Here we will examine a model for multiplayer game outcomes that will be modeled

using a CDN. The model will be designed on a game-by-game basis in which the team

assignments of players for a given game determines the connectivity of the graph G for

the CDN. In contrast to this formulation, in our model the team variables will correspond

to the ranks of teams: we will call such variables team performances and denote these

Chapter 5. Learning to rank with cumulative distribution networks 97

Figure 5.3: The TrueSkillTM factor graph for a particular Halo 2TM game involving three

teams with two players each with the team scores T1 = t1, T2 = t2, T3 = t3 with t1 < t2 < t3 so

that team 3 here achieved the highest total of player scores. The variables H12,H23 correspond

to differences in team scores which determine the ranking of teams, so that teams n and n+ 1

are tied in their rankings if the difference in their team scores is below a threshold parameter.

Here, Pt = {1, 2, 3, 4, 5, 6} and Tt = {{1, 2}, {3, 4}, {5, 6}}. Latent variables correspond to

nodes in red and observed variables correspond to nodes in blue. Each player k = 1, 2, 3, 4, 5, 6

is assigned a skill function that reflects the distribution of that player’s skill level Sk given

past game outcomes. Each player then achieves score Xk in any given game and team scores

Tn, n = 1, 2, 3 are then determined as the sum of player scores for each team.

as Rn for team n in order to contrast these with the team score variables Tn in the

TrueSkill model. Our model will account for player scores Xk for each player k ∈ Pt in

the game, the team performances Rn for each team n = 1, · · · , N in the game and each

player’s skill Sk, which is a random variable that influences that player’s score for the

given game. For any given game, Rn will be determined as the sum of the player scores

for team n, and then sorting the resulting sums so that Rn corresponds to the rank of

team n. The set of team performances rTt will be given by the joint configuration of the

Rn variables for that game. The goal will then be to learn a distribution over player skills

Sk given previous game outcomes. We will design our model according to two principles.

Chapter 5. Learning to rank with cumulative distribution networks 98

First, the relationship between player scores and team performances is modeled as being

stochastic, as player scores vary from one game to the next and team assignments change

from one game to the next, so that given knowledge of the players in that game and their

team assignments, there is some uncertainty in how a team will rank once the game is

over. Second, team performance variables depend on those of other teams in the game,

so that each team’s performance should be linked to that of other teams in a game.

The CDN framework allows us to satisfy both desiderata in the form of modelling

constraints on the marginal CDFs for variables in the model. To address the first point, we

will require a set of CDN functions that connect player scores to team performances. Here

we will make use of the cumulative model presented in Section 5.1.1 that relates a linear

function f(x) = wTx on inputs x to a single output ordinal variable y ∈ {r1, · · · , rL} so

that ℙ[y = rl] = ℙ[θ(rl−1) < f(x) + ǫ ≤ θ(rl)] = Fǫ(θ(rl) − f(x)) − Fǫ(θ(rl−1) − f(x)),

where ǫ is an additive noise variable and θ(r0), · · · , θ(rL) are the cutpoint parameters of

the model. Equivalently, we can write ℙ[y ≤ rl] = ℙ[ǫ ≤ θ(rl) − f(x)]. In the context

of a multiplayer game, the set of inputs x will consist of a set of player scores for a

given game. Thus, we learn a set of cutpoints θ(r0) < · · · < θ(rL) once using all of the

games in the training data set. The above regression on team performances treats team

performances as being independent: thus, we can use the CDN framework to augment the

above parametric model in order to account for statistical dependencies between multiple

team performances in any given game.

We will model multiplayer games using a CDN in which players are grouped into

teams and teams compete with one another. If there are N teams for any given game,

then we can assign a CDN function gn for each team such that

gn(xn, rn) =
∫ xn

−∞
F
(

θ(rn); 1Tu, σ2
)

P
(

u
)

du, (5.9)

where F
(

θ(rn); 1Tu, σ2
)

is a cumulative model relating input player scores to output team

performance, 1 is a vector of ones so that the regression function in the cumulative model

is given by f(x) = 1Tx and xn, rn are the player scores and team performance for team

Chapter 5. Learning to rank with cumulative distribution networks 99

n. Furthermore, θ(rn) are “cutpoints” that define contiguous intervals in which rn is the

ranking for team n based on that team’s performance and P (u) is a probability density

over the vector of player scores u. In order to set these cutpoints, we solve the ordinal

regression problem in which for any given game and for a given team n, f(xn) = 1Txn

and the output variable is the team performance rn ∈ {r1, · · · , rL}. We then solve the

ordinal regression problem using all of the teams in all games in the training data set

in order to obtain cutpoints θ(r0), · · · , θ(rL), where we treat each team’s ranking rn

as being mutually independent for the purpose of estimating the cutpoints. Once the

cutpoints have been estimated, we will model the distributions F
(

θ(rn); 1Tu, σ2
)

, P
(

u
)

in Equation (5.9) as

F
(

θ(rn); 1Tu, σ2
)

= Φ
(

θ(rn); 1Tu, σ2
)

, (5.10)

P (u) = Gaussian(u;µ1, σ2I). (5.11)

To address the fact that teams compete in any given game, we model ordinal relation-

ships between team performance using the notion of stochastic orderings (Section 2.2), so

that for two teams with team performances RX , RY , RX � RY if FRX (t) ≥ FRY (t) ∀ t ∈

ℝ, where FRX (·), FRY (·) are the marginal CDFs of RX , RY . This then allows us to design

models in which we can express differences in team performances in the form of pairwise

constraints on their marginal CDFs. We note at this juncture that while it is possible to

model such stochastic ordering constraints between variables using directed, undirected

or factor graphs, doing so introduces additional constraints that are likely to increase

the difficulty of performing inference under such models. In contrast, the CDN frame-

work here allows us to explicitly specify such stochastic ordering constraints, in addition

to allowing for tractable computations in the resulting model. In particular, although

the Rn variables are a deterministic function of the sum of player scores, it is easy to

specify orderings amongst the Rn variables whilst modelling them as being stochastic

using the framework of CDNs. By contrast, it will generally be more difficult in terms

Chapter 5. Learning to rank with cumulative distribution networks 100

of computation and representation to enforce constraints of the type
[

rn ≤ rn+1

]

for

Rn = rn, Rn+1 = rn+1 in a directed/undirected/factor graph model.

For the proposed CDN model, given N ranked teams, we can thus define N − 1

functions hn,n+1 so that

hn,n+1(rn, rn+1) = Φ





[

rn
rn+1

]

;
[

r̃n
r̃n+1

]

,Σ



, (5.12)

where

Σ =

[

σ2 ρσ2

ρσ2 σ2

]

and r̃n ≤ r̃n+1 so as to enforce Rn � Rn+1 in the overall model. While the use of

stochastic ordering constraints is admittedly weaker here than the use of deterministic

constraints such as rn ≤ rn+1, the use of stochastic constraints here simplifies model

specification. Finally, we will use a skill function sk(xk) for each player k to model

that player’s distribution over game scores given previous game outcomes. The player

performance nodes in the CDN will then be connected to the team performance nodes

via the above CDN functions gn and team performance variable nodes Rn are linked to

one another via the above CDN functions hn,n+1.

The above functions and model variables jointly define the CDN for modelling multi-

player games. An example is given in Figure 5.4(a) for a game with three teams and six

players. One can readily verify from the CDN of Figure 5.4(a) that for the above model

and for any given game, the stochastic ordering relationship R1 � R2 � · · · � RN as

defined above is enforced by marginalizing over all player scores in the CDN.

It is instructive to convert the CDN to both a factor graph and a Bayesian net-

work in order to understand the assumptions being made by the proposed CDN model.

If we apply the representation theorem from Chapter 3 (Theorem 3.4.1) to the pro-

posed CDN by introducing latent variable nodes Sk, k ∈ Pt, Gn, n = 1, · · · , N and

Hn,n+1, n = 1, · · · , N−1 for each CDN function in the model, we obtain the factor graph

shown in Figure 5.4(b) and the directed graphical model in Figure 5.4(c). The corre-

sponding factor graph representation of the CDN provides us with some insight about

Chapter 5. Learning to rank with cumulative distribution networks 101

(a)

(b)

(c)

Figure 5.4: Graphical models for the player and team performances in a game of Halo 2TM for

three teams with two players each. Latent variables correspond to nodes in red and observed

variables correspond to nodes in blue. Each player k = 1, 2, 3, 4, 5, 6 achieves scoreXk in a match

and team performances Rn, n = 1, 2, 3 are determined as the sum of player performances for each

team. a) A model for the Halo 2TM game represented as a CDN; b) The corresponding factor

graph for the CDN in a) with latent variable nodes introduced according to the representation

theorem; c) The corresponding directed graphical model.

Chapter 5. Learning to rank with cumulative distribution networks 102

the assumptions being made using the CDN model. For example, in the factor graph,

each Sk variable corresponds to a variable for player k’s unobserved skill level. The

Hn,n+1 variables can be interpreted as pairwise draw margin variables, or the expected

pairwise difference in team performances. The Gn variables can be interpreted as team-

specific performance modifiers that impacts both team and player-specific performances.

Comparing to the TrueSkillTM factor graph of [23] shown in Figure 5.3, we see that the

CDN models the generative process describing player and team performances differently,

though the the Sk and Hn,n+1 variable nodes are present in both factor graphs and model

similar relationships between observable variables in the model. We can further glean

insights about independence assumptions being made by the CDN by viewing the di-

rected graphical model corresponding to the factor graph obtained above (Figure 5.4(c)).

In particular, we can see that graph separation in the CDN do not imply conditional

independence of player skill nodes, whilst in the TrueSkillTM factor graph, player skills

are separated from one another by all observed variable nodes and so are conditionally

independent given all observed variables.

Having presented the CDN for modelling multiplayer games, we will now proceed to

describe a method for predicting game outcomes in which we update player skill functions

after each game using message-passing.

5.2.3 Ranking players in multiplayer games

using the derivative-sum-product algorithm

Here we will apply the DSP algorithm from Chapter 4 in the context of ranking players in

multiplayer games with a team structure, where the problem consists of jointly predicting

multiple ordinal output variables. It should be noted that while it may be possible to

construct similar models using a directed, undirected or factor graph, the CDN allows us

to simultaneously specify both ordinal and statistical independence relationships amongst

model variables while allowing for a tractable inference algorithm.

Chapter 5. Learning to rank with cumulative distribution networks 103

In order to compute the DSP messages using the above CDN functions, we must

compute the derivatives of all CDN functions. Since all of our functions are themselves

Gaussian CDFs, the derivatives ∂xA

[

φs(xs)
]

can be easily evaluated with respect to vari-

ables XA as

∂xA

[

Φ
(

x;µ,Σ
)

]

= Gaussian
(

xA;µA,ΣA

)

Φ
(

xB; µ̃B, Σ̃B

)

, (5.13)

where

x =

[

xA
xB

]

, µ =

[

µA
µB

]

, Σ =

[

ΣA ΣA,B
ΣTA,B ΣB

]

,

µ̃B = µB + ΣTA,BΣ−1
A (xA − µA),

Σ̃B = ΣB −ΣTA,BΣ−1
A ΣA,B.

Thus the message computations in the CDN are given by the updates shown in Tables 5.1,

5.2 and 5.3. We ensure that each message is properly normalized by locally computing

the constant Z = lim
z→∞µ(z) for each message and multiplying each message pair µ, λ by

Z−1.

Having described the above CDN model for multiplayer games, we would like to

then estimate the player skill functions sk(xk) for each player k from previous games

played by that player. Denote by the set Tk ⊆ {1, · · · , T} the set of games in which

player k participated. We then seek to estimate sk(xk) for player k given previous team

performances rTt , t ∈ Tk and player scores for all other players xPt\k for all games t ∈ Tk
in which player k participated. Denote by O−kt the outcome of a game with the player

score for player k removed from xPt . We will define the skill function sk(xk) for a player

to be given by

sk(xk) = F
(

xk|{O−kt }t∈Tk
)

=
∏

t∈Tk
F (xk|O−kt). (5.14)

The above expression for the skill function sk(xk) for player k corresponds to the con-

ditional distribution F
(

xk|{O−kt }t∈Tk
)

given all past games played by player k with the

Chapter 5. Learning to rank with cumulative distribution networks 104

• Initialize for each player score node Xk:

µXk→gn(xk) = sk(xk),

λXk→gn(xk) = ∂xk

[

sk(xk)
]

.

• Pass messages from function node gn to team performance node Rn for neighboring

player nodes Xn, n = 1, · · · , N :

µgn→Rn(r,x) =
∑

s,t|Xs∪Xt=Xn
Xs∩Xt=∅

∂xs

[

gn(xn, rn)
]

∏

j|Xj∈Xs

µXj→gn(xj)
∏

j|Xj∈Xt

λXj→gn(xj),

λgn→Rn(r,x) =
∑

s,t|Xs∪Xt=Xn
Xs∩Xt=∅

∂xs,rn

[

gn(xn, rn)
]

∏

j|Xj∈Xs

µXj→gn(xj)
∏

j|Xj∈Xt

λXj→gn(xj).

• Set µhn−1,n→Rn(r,x) = λhn−1,n→Rn(r,x) = 1 for n = 1. Pass messages from team

performance node Rn to neighboring team performance nodes Rn+1 and function

nodes hn,n+1 for n = 1, · · · , N :

µRn→hn,n+1(r,x) = µhn−1,n→Rn(r,x)µgn→Rn(r,x),

λRn→hn,n+1(r,x) = λhn−1,n→Rn(r,x)µgn→Rn(r,x)

+ µhn−1,n→Rn(r,x)λgn→Rn(r,x),

µhn,n+1→Rn+1(r,x) = µRn→hn,n+1(r,x)∂rn

[

hn,n+1(rn, rn+1)
]

+ λRn→hn,n+1(r,x)hn,n+1(rn, rn+1),

λhn,n+1→Rn+1(r,x) = µRn→hn,n+1(r,x)∂rn,rn+1

[

hn,n+1(rn, rn+1)
]

+ λRn→hn,n+1(r,x)∂rn+1

[

hn,n+1(rn, rn+1)
]

.

Table 5.1: The DSP algorithm for updating player ranks. Messages are ensured to be properly

normalized locally by computing the constant Z = lim
z→∞µ(z) for each message and multiplying

the message pair µ, λ by Z−1.

Chapter 5. Learning to rank with cumulative distribution networks 105

• Set µhn,n+1→Rn(r,x) = λhn,n+1→Rn(r,x) = 1 for n = N . Pass messages from team

performance node Rn to neighboring team performance nodes Rn−1 and function

nodes hn−1,n for n = 1, · · · , N :

µRn→hn−1,n(r,x) = µhn,n+1→Rn(r,x)µgn→Rn(r,x),

λRn→hn−1,n(r,x) = λhn,n+1→Rn(r,x)µgn→Rn(r,x)

+ µhn,n+1→Rn(r,x)λgn→Rn(r,x),

µhn−1,n→Rn−1(r,x) = µRn→hn−1,n(r,x)∂rn

[

hn−1,n(rn−1, rn)
]

+ λRn→hn−1,n(r,x)hn−1,n(rn−1, rn),

λhn−1,n→Rn−1(r,x) = µRn→hn−1,n(r,x)∂rn−1,rn

[

hn−1,n(rn−1, rn)
]

+ λRn→hn−1,n(r,x)∂rn−1

[

hn−1,n(rn−1, rn)
]

.

• Pass messages from each team performance node Rn to neighboring function nodes

gn:

µRn→gn(r,x) = µhn−1,n→Rn(r,x)µhn,n+1→Rn(r,x),

λRn→gn(r,x) = λhn−1,n→Rn(r,x)µhn,n+1→Rn(r,x)

+ µhn−1,n→Rn(r,x)λhn,n+1→Rn(r,x).

Table 5.2: The DSP algorithm for updating player ranks (cont’d). Messages are ensured to

be properly normalized locally by computing the constant Z = lim
z→∞µ(z) for each message and

multiplying the message pair µ, λ by Z−1.

Chapter 5. Learning to rank with cumulative distribution networks 106

• Pass messages from function nodes gn to neighboring player score nodes Xk:

µgn→Xk(r,x) =
∑

s,t|Xs∪Xt=Xn\Xk
Xs∩Xt=∅

∏

j|Xj∈Xs

µXj→gn(xj)
∏

j|Xj∈Xt

λXj→gn(xj)

·


∂xs

[

gn(xn, rn)
]

λRn→gn(r,x) + ∂xs,rn

[

gn(xn, rn)
]

µRn→gn(r,x)



,

λgn→Xk(r,x) =
∑

s,t|Xs∪Xt=Xn\Xk
Xs∩Xt=∅

∏

j|Xj∈Xs

µXj→gn(xj)
∏

j|Xj∈Xt

λXj→gn(xj)

·


∂xs,xk

[

gn(xn, rn)
]

λRn→gn(r,x) + ∂xs,xk,rn

[

gn(xn, rn)
]

µRn→gn(r,x)



.

• For each player score node Xk,

µXk→sk(r,x) = µgn→Xk(r,x),

λXk→sk(r,x) = λgn→Xk(r,x).

• Update player skill functions sk(xk) using the multiplicative rule

sk(xk)← sk(xk)µgn→Xk(x, r).

Table 5.3: The DSP algorithm for updating player ranks (cont’d). Messages are ensured to

be properly normalized locally by computing the constant Z = lim
z→∞µ(z) for each message and

multiplying the message pair µ, λ by Z−1.

Chapter 5. Learning to rank with cumulative distribution networks 107

assumption that team performances and player scores are independently drawn from

CDFs F (rTt,xPt) for t = 1, · · · , T . The skill function sk can then be readily estimated

by the DSP algorithm, since each game outcome is modeled by a tree-structured CDN.

More precisely, we first initialize sk(xk) = Φ(xk;µ, β
2). For each game Γt we can per-

form message-passing to obtain the conditional CDF F (xk|O−kt) = µgn→Xk(rTt ,xPt\k)

for player k (assuming the message µgn→Xk has been properly normalized as described

above) and then perform a multiplicative update sk(xk)← sk(xk)µgn→Xk . The skill func-

tion sk(xk) can then be used to make predictions for player k’s scores in future games.

We will proceed in the next section to apply the model and the above inference procedure

to the problem of modelling Halo 2TM games.

5.2.4 The Halo 2TM Beta dataset

The Halo 2TM Beta dataset (v1.1)1 consists of player scores for four game types (“Head-

ToHead”, “FreeForAll”, “SmallTeams” and “LargeTeams”) over a total of 6,465 players.

The descriptions for each of the four game modes are given below.

• HeadToHead: 6227 games/1672 players, one player competing against another

player

• FreeForAll: 60022 games/5943 players, up to eight players playing against each

other

• SmallTeams: 27539 games/4992 players, up to four players per team, two competing

teams

• LargeTeams: 1199 games/2576 players, up to eight players per team, two competing

teams

1Credits for the use of the Halo 2TM Beta Dataset are given to Microsoft Research Ltd. and Bungie.

Chapter 5. Learning to rank with cumulative distribution networks 108

To construct the above CDN model, we set the cutpoints θ(rn) in the above cumula-

tive model using ordinal regression of team ranks on team performances for all games

in the training set. We initialized all player skill functions to sk(xk) = Φ(xk;µ, β
2).

The set of parameters {µ, ρ, β, σ} in the CDN model was set based on test error to

{25,−0.95, 20, 0.25} for “HeadToHead”, {50,−0.2, 10, 0.2} for “FreeForAll”, {20,−0.1, 10,

0.027} for “SmallTeams” and {1,−0.9, 1, 0.01} for “LargeTeams” game modes. For each

of these game modes, we applied the DSP algorithm as described above in order to obtain

updates for the player skill functions sk(xk). An example of such an update at the end

of a game with four competing players is shown in Figure 5.5.

Figure 5.5: An example of derivative-sum-product updates for a four-player free-for-all game,

with the derivative of the skill functions before the updates (blue) and afterwards (red).

Before each game, we can predict the team performances using the player skills learned

thus far via the rule x∗k = arg max
xk

∂xk

[

sk(xk)
]

. For each game, the set of team perfor-

mances is then defined by the ordering of teams once the game is over, where we add

the predicted player scores together x∗k for each team and sorting the resulting sums in

ascending order. For any predicted set of team performances, an error is incurred for that

game if two teams for that game were misranked. One can then compute an error rate

over the entire set of games for which we make predictions about team performances.

A plot showing the average prediction error rate obtained for the above CDN models

over five runs of DSP is shown in Figure 5.6(a). It is worth noting that our choice of

multivariate Gaussian CDFs as CDN functions in the above model requires that we use a

Chapter 5. Learning to rank with cumulative distribution networks 109

sampling method in order to evaluate the CDN functions, so that the error bars over the

five runs are shown. In addition, Figure 5.6(a) also shows the error rates reported by [23]

for TrueSkillTM and ELO [14], which is a statistical rating system used in chess. Here,

we see that the ability to specify both ordinal relationships and statistical dependence

relationships between model variables using a CDN allows us to achieve higher predictive

accuracy than either TrueSkillTM, which requires approximating the true posterior dis-

tribution over team performances, or the ELO method, which does not account for the

team structure of multiplayer games. As an additional comparison, we performed infer-

ence under the TrueSkillTM factor graph model for the “FreeForAll” and “LargeTeams”

game modes by sampling from the model using the Metropolis-Hastings (MH) algorithm

where the minimum number of samples per player per game was set to be 1000. The

average error rate achieved by the MH algorithm over three independent runs of sam-

pling for the “LargeTeams” games was 28.58%± 0.011%), which is nearly the error rate

achieved by the DSP algorithm for this same task. Note however that the amount of

computation required to achieve this error rate was significantly larger than that required

by the DSP algorithm for the same task using a machine with 12 GB of RAM and two

2.8 GHz dual-core AMD Opteron CPUs (Figure 5.6(b)). We also found that the rejection

rate in the sampling procedure was extremely high when sampling from the model for

“FreeForAll” games, so that the MH algorithm failed to generate over 1000 samples from

the stationary distribution after over three weeks of computation. These results suggest

that while the TrueSkillTM model can provide a good model for game outcomes in mul-

tiplayer games, the cost of performing exact inference under the model will generally be

prohibitive. In contrast, our results suggest that the CDN model provides a model under

which exact inference can be performed at a fraction of the computational cost required

to perform exact inference in the factor graph model.

Chapter 5. Learning to rank with cumulative distribution networks 110

HeadToHead FreeForAll SmallTeams LargeTeams
0

10

20

30

40

50

60

 33.24 32.44 32.03 32.14 30.82

11.77

 34.92 35.23

16.59

 39.49 38.15

 27.85

T
es

t e
rr

or
 (

%
)

ELO
TrueSkill
CDN

(a)

0 100 200 300 400 500 600 700 800

CDN

MCMC

82.08579

704.9482

Average runtime per game (s.)

(b)

Figure 5.6: a) Prediction error on the Halo 2TM Beta dataset (computed as the fraction of

team predicted incorrectly before each game) for DSP, ELO [14] and TrueSkillTM [23] methods.

Error bars over five runs of DSP are shown. b) Average runtime per game for “LargeTeams”

games using MCMC sampling in the TrueSkillTM factor graph and using the DSP algorithm

in the proposed CDN model. Errorbars are shown for three independent initializations of each

algorithm.

5.2.5 Discussion

In this section we presented a model and method for learning to rank in the context

of multiplayer team-based games such as Halo 2TM. Our model represent both statis-

Chapter 5. Learning to rank with cumulative distribution networks 111

tical dependence relationships and notions of orderings of variables in the model such

as team performances and individual player scores. We then used the DSP algorithm

from Chapter 4 to compute conditional CDFs for each player’s score. Comparisons to

the TrueSkillTM and ELO methods for factor graph models show that our model and

method allows both for fast estimation and improved test error on the Halo 2TM Beta

dataset.

While the above method has the advantage of providing a flexible probabilistic model

and allowing for tractable inference, the choice of multivariate Gaussian CDFs for CDN

functions requires the use of sampling methods in order to evaluate DSP messages. As

shown in Chapter 3, one can find faster parameterizations of the CDN functions that do

not require sampling. A particular drawback to the above method is that we have not

explicitly accounted for the fact that the observed ranking values are arbitrary up to a

monotonic transformation, so that our model predictions may be sensitive to such trans-

formations. Furthermore, we have not yet presented a general framework for learning the

CDN functions (such as a maximum-likelihood method for estimating model parameters),

nor have we discussed how one could account for additional information in the form of

features. For example, in the multiplayer gaming example, player fatigue, stamina and

frequency of injury could be accounted for as additional features for the purpose of mak-

ing predictions. Additionally, such features could be used to learn different rankings for

different types of players (e.g.: defensive versus offensive players) and could allow for

a more refined modelling of player-to-player interaction. Finally, the proposed method

assumes a particular set of statistical dependence relationships that are a specific prop-

erty of team-based games, but perhaps not for other problems of learning to rank. To

address these issues, we will proceed in the next section to develop a general framework

for learning to rank where we are given observations about partial orderings and we seek

to leverage these together to predict new orderings.

Chapter 5. Learning to rank with cumulative distribution networks 112

5.3 Probability models over partial orderings as cumula-

tive distribution networks

In many problems, the objects to be ranked do not necessarily exhibit a higher order

structure as was the case in multiplayer team-based games, where each team’s perfor-

mance was a function of its member players’ scores. Furthermore, unlike the multiplayer

gaming setting where players were not provided with additional features, in many other

problems of learning to rank, each object is provided with some features that are pre-

sumably relevant to the task of learning a ranking over objects. In this section we will

formulate a general framework for learning to rank in which we will use CDNs to formu-

late probabilistic models for orderings over objects.

The approach we adopt here for learning to rank is to combine the graphical frame-

work of CDNs with a ranking function ρ that independently maps each node to a

scalar score value [31], so that a higher score is assigned to objects with higher ranks.

The intuition here is that a sensible loss functional can be chosen as the probability

ℙ[α1 � · · · � αK] of observing a partial ordering over nodes α1, · · · , αK for any given

observation, so that CDNs provide a graphical framework whereby we can model many

of the statistical dependence relationships between variables for such probabilities.

Suppose that we wish to rank nodes in the set V given a set of observationsD1, · · · , DN ,

where each observationDn provides a partial ordering of the nodes in some subset Vn ⊆ V.

For example, in an information retrieval task, a node corresponds to a document and each

observation consists of a query with relevance ratings for each document that are pro-

vided by an expert. It is crucial to note here that the quantitative labels for each node,

such as relevance ratings, may in general not be directly comparable from one observation

to the next. In the information retrieval task, this would mean that documents with the

same rating across different observations might not necessarily have the same degree of

relevance for a future query.

Chapter 5. Learning to rank with cumulative distribution networks 113

For a given observation, we can model the ordering of nodes as a directed acyclic

graph in which a directed edge e = (α, β) is drawn between two nodes α, β if and only

if node α was preferred to node β within observation Dn. In the information retrieval

task, this would mean that document α was assigned a higher relevance rating yα than

the rating yβ for document β for a given observation. The way in which a preference is

defined between two objects can be application-specific and we will restrict ourselves only

to modelling the resulting set of preferences. We will denote the preference between two

nodes in an order graph by α ≻ β and we will denote this as the order graph Gn = (Vn, En)

for observation Dn, where En is the set of all edges in the order graph. We first note

that the order graph does not correspond to a directed graphical model for some joint

probability and merely conveys a set of preference relationships amongst objects to be

ranked. In general, we will assume that for observation Dn we observe a partial ordering

over nodes, with complete orderings being a special case. A toy example of an order

graph defined over four nodes is shown in Figure 5.7. For any given order graph, the

absence of an edge between two nodes α, β in the order graph indicates that we cannot

assert any preference between the two nodes. From the definition of the order graph

as a directed acyclic graph, it follows that transitivity of preference holds for any given

observation, so that if α ≻ β, β ≻ γ for any given observation Dn, then α ≻ γ in Dn.

We note that while transitivity must hold for any given observation, we do not assume

or require that transitivity hold across all observations, as different observations may

contain different preference relationships between the same nodes.

We now define ρ : V 7→ ℝ as a ranking function that assigns a real-valued number to

nodes so that the score Sα for node α is given by

Sα = ρ(α) + πα, (5.15)

where Sα is real-valued and πα is a random variable. Thus by assigning a node-specific

variable πα for each node α ∈ V, our model allows us to account for the fact that

the amount of uncertainty about a node’s score may depend on unobserved features for

Chapter 5. Learning to rank with cumulative distribution networks 114

Figure 5.7: Example of an observation with four nodes α, β, γ, δ with the corresponding order

graph. Here, the order graph represents the set of preference relationships α ≻ β, α ≻ γ, β ≻

γ, β ≻ δ, γ ≻ δ.

that node (e.g.: documents associated with certain keywords might have less variability

in their scores than other documents associated with different keywords). Under this

model, the necessary and sufficient condition for the preference relation α ≻ β is then

ρ(α) + πα ≥ ρ(β) + πβ ⇔ παβ = πβ − πα ≤ ρ(α)− ρ(β). (5.16)

where we have defined παβ as a preference variable for nodes α, β. The canonical problem

of ranking learning is then to learn the function ρ from the training data, where each

observation consists of an order graph over some subset of the nodes to be ranked. A

flowchart of the problem of learning from order graphs is shown in Figure 5.8.

For each edge e ∈ En in the order graph such that e = (α, β), we can define

r(ρ; e,Dn) ≡ ρ(α)− ρ(β) and collect the set of such variables into the vector r(ρ;Gn) ∈

ℝ
|En|. Similarly, let πe ≡ παβ be a preference variable defined along the directed edge

e. Then for a given observation Dn, the probability of observing the order graph

Gn = (Vn, En) corresponding to the partial ordering of nodes in Vn is given by

ℙ

[

En|Vn, ρ
]

≡ ℙ



 ∩(α,β)∈En {α ≺ β}


 = ℙ



 ∩e∈En {πe ≤ r(ρ; e,Dn)}


 = Fπ
(

r(ρ;Gn)
)

,

(5.17)

Chapter 5. Learning to rank with cumulative distribution networks 115

Figure 5.8: Learning the ranking function from training data. The ranking function ρ maps

each node α to ℝ. The goal is to learn ρ such that we correctly rank the nodes in a new test

observation.

where Fπ
(

r(ρ;Gn)
)

is the joint CDF over the preference variables. The goal given an

observation Dn is therefore to learn the ranking function ρ by maximizing the probability

ℙ

[

En|Vn, ρ
]

of generating the orderings in observation Dn, given the ranking function ρ

and the nodes in Vn. Note that under this framework, the set of edges En corresponding

to the set of pairwise preferences between nodes in the order graph are treated as random

variables that may have a high degree of dependence between one another. The prob-

lem of learning the ranking function is then one of structured ranking learning in which

we would like to score multiple nodes simultaneously whilst accounting for statistical

dependence relationships between these scores.

Now, if we are given multiple independent observations D = {D1, · · · , DN}, then we

can define a structured loss functional

L(ρ, Fπ,D) = −
N
∑

n=1

logℙ



 ∩(α,β)∈En {α ≺ β}


 = −
N
∑

n=1

logFπ
(

r(ρ;Gn)
)

, (5.18)

Chapter 5. Learning to rank with cumulative distribution networks 116

where each term logFπ
(

r(ρ;Gn)
)

= logℙ



 ∩(α,β)∈En {α ≺ β}


 in the loss functional is

the probability of a partial ordering over nodes in observation Dn. Each of these terms

depends on multiple preference relationships specified by the order graph for observation

Dn. Thus the structured loss functional is the probability of observing a set of partial

orderings over subset of nodes to be ranked. In particular, the loss incurred for a given

predicted ordering and an observed one will depend both on the ranking function ρ and

the joint CDF Fπ. Thus, a low loss is achieved by a ranking function ρ that succeeds in

minimizing the number of misordered pairs of nodes for a given observation Dn.

Having defined the structured loss functional, the problem of learning the ranking

function ρ then consists of the following optimization problem:

min
ρ,Fπ

L(ρ, Fπ,D). (5.19)

In general, the above structured loss functional may be difficult to specify, as it takes on

the form of a joint CDF over a possibly large number of preference variables, which may

require a large number of parameters to specify. We can however, compactly model such

a joint CDF using CDNs, as we will now show.

5.3.1 Transforming order graphs into cumulative distribution net-

works

We begin this section by noting that we have posited an equivalence between a pairwise

preference α ≺ β and the event παβ ≤ ρ(α)− ρ(β). The representation of the structured

loss functional in Equation (5.18) as a CDN then consists of transforming the order

graph Gn for a given observation into a set of variable nodes in the CDN, so that for

each preference relation implied by the order graph we create a corresponding preference

variable. More precisely, for each edge e = (α, β) in the order graph, the preference

variable παβ is created. All such variables can then be connected to one another in a CDN

with many possible connectivities (Figure 5.9). The pattern of connectivity used will

Chapter 5. Learning to rank with cumulative distribution networks 117

determine the set of statistical dependence relationships between these preferences παβ

as given by the marginal and conditional independence properties of the CDN explored

in Chapter 3.

Figure 5.9: Transforming the order graph Gn into a CDN. For each edge e = (α, β) in the

order graph (left), a preference variable παβ is created. All such random variables can then be

connected to one another in a CDN with different possible connectivities (right), allowing for

complex statistical dependence relationships between preferences.

One possible concern is that we may require a CDN that is cumbersome to learn due

to the number of CDN functions connecting pairs of preference variables in the model. In

practice, because any observation will only convey information about a small subset of the

nodes in V and because most often we will observe partial orderings of nodes, the number

of preference nodes in the CDN for the given observation will be much smaller than

the worst-case number of all possible pairwise preferences between nodes to be ranked.

Furthermore, we do not have to store a large CDN in memory during training, as we only

need to store a single CDN over a relatively small number of preference variables for the

current observation. The closure property of CDNs under marginalization (Proposition

3.2.5) ensures that the set of statistical dependence relationships between preference

variables remains unchanged under marginalization, so that one can view the CDN for a

given observation as being a subgraph of a larger CDN defined over all possible pairwise

preference variables so that graph separation of nodes in both graphs imply the same set

Chapter 5. Learning to rank with cumulative distribution networks 118

of independence relationships. We can thus perform structured ranking learning in an

online fashion by constructing a single CDN for each observation, computing the gradient

of the loss functional defined by that CDN for the given observation and then updating

the parameters of the model.

5.3.2 Connections to probability models for rank data

The above formulation of the structured ranking learning framework allows us to model

a joint CDF over preference variables as a CDN. We will show in this section that this

formulation allows us to view probability models for rank data as CDNs with partic-

ular connectivities between preference variables. Several probability models have been

developed for modelling pairwise preferences, with different models making different as-

sumptions about the statistical independence relationships between pairwise preferences.

Here we will present two statistical models for pairwise preferences that are frequently

used. While other types of model have been developed to account for rank data, such as

distance-based models defined over permutations [46], we will focus here on the class of

models defined over pairwise preferences, due to their frequent use and their connection

to the graphical modelling framework of this thesis. For a complete survey of models and

methods for rank data, the reader is encouraged to consult [46].

Bradley-Terry models

Suppose we wish to rank objects α1, · · · , αK . In a Bradley-Terry model [46], the proba-

bility of a preference relation αi ≻ αj is given by

ℙ

[

αi ≻ αj

]

=
exp(ρ(αi))

exp(ρ(αi)) + exp(ρ(αj))
, (5.20)

so that a higher value of ρ(αi) relative to ρ(αj) corresponds to a higher degree of prefer-

ence between αi, αj. An example of such a model arises in information retrieval, where

given a query for documents, a higher ρ(αi) corresponds to a higher degree of relevance

Chapter 5. Learning to rank with cumulative distribution networks 119

Figure 5.10: Corresponding CDNs for the Bradley-Terry and Plackett-Luce probability models

for a complete ordering over four nodes α, β, γ, δ.

of document αi for the given query. The probability of a partial ordering α1 � · · · � αK

is then given by

ℙ

[

α1 � · · · � αK

]

=
∏

αi≻αj

exp(ρ(αi))

exp(ρ(αi)) + exp(ρ(αj))

=
∏

αi≻αj

1

1 + exp
(

−
(

ρ(αi)− ρ(αj)
)

)

=
∏

αi≻αj

1

1 + exp
(

− rij
) =

∏

αi≻αj
φ
(

rij
)

, (5.21)

where rij ≡ ρ(αi) − ρ(αj) and each of the functions φ
(

rij
)

satisfy the properties of a

CDF, so that we can view the joint probability ℙ

[

α1 � · · · � αK

]

as a CDF defined over

preferences. Each term in the above product corresponds to the probability of observing

the pairwise preference αi ≻ αj in the partial ordering α1 � · · · � αK . Note that a partial

ordering implies the absence of a preference for some αi, αj. Thus the joint probability

of all pairwise preferences under a Bradley-Terry model can be viewed as a disconnected

CDN in which all pairwise object preferences are treated as being independent. This

Chapter 5. Learning to rank with cumulative distribution networks 120

is illustrated in Figure 5.10 for an example in which four nodes α, β, γ, δ have been

ranked and we model the joint probability over the set of corresponding preferences

α ≻ β, α ≻ γ, α ≻ δ, β ≻ γ, β ≻ δ, γ ≻ δ using a Bradley-Terry model.

Plackett-Luce models

The Plackett-Luce model generalizes the Bradley-Terry model to multiple pairwise com-

parisons between objects to be ranked, so that the joint probability of a partial ordering

as

ℙ

[

α1 � · · · � αK

]

=
K
∏

k=1

exp(ρ(αk))

exp(ρ(αk)) +
∑

αj≻αk
exp(ρ(αj))

=
K
∏

k=1

1

1 +
∑

αj≻αk
exp
(

−
(

ρ(αk)− ρ(αj)
)

)

=
K
∏

k=1

φk(rk), (5.22)

where rk is a vector whose elements consists of pairwise differences ρ(αk)−ρ(αj) and each

of the functions φk(rk) also satisfy the properties of a CDF, so that we can again view the

joint probability ℙ

[

α1 � · · · � αK

]

as a joint CDF over preferences that can be viewed

as a CDN with functions φk(rk). Each term in the Plackett-Luce model corresponds to

the probability that αk is ranked first in the sequence followed by αk+1, · · · , αK , so that

the joint probability of the partial ordering α1 � · · · � αK is given by the product of

such terms. Thus the Plackett-Luce model incorporates additional constraints between

pairwise preferences that are not present in the Bradley-Terry model, at the cost of

a slightly more complex model. As a consequence of such additional constraints, the

corresponding CDN adopts additional structure as compared to the CDN for the Bradley-

Terry model. The CDN for the Plackett-Luce model corresponding to the previous

example of four nodes α, β, γ, δ is shown in Figure 5.10. Thus, we have shown that

CDNs provide a graphical representation for the above models of rank data, so that

Chapter 5. Learning to rank with cumulative distribution networks 121

the Bradley-Terry and Plackett-Luce models can be viewed as different instantiations

of a joint CDF over pairwise preferences and hence as particular types of CDNs. This

suggests that we can formulate alternate probabilistic models for rank data by considering

joint CDFs defined over pairwise preferences using different types of CDN functions

and connectivities for modelling different conditional independence relationships amongst

variables.

Having presented the framework of structured ranking learning using CDNs, we will

now apply the framework to the problem domains of document retrieval and regulatory

sequence search in computational biology, where the problem of learning to rank arises.

5.4 Application: Document retrieval

The problem of learning to rank is at the heart of many information retrieval applications

such as collaborative filtering [57] and document retrieval [44]. In this section we will

apply the above structured ranking learning framework to the latter problem, whereby

we are given queries with documents labelled by relevance and we wish to learn a model

to score documents by relevance for a new query.

5.4.1 Previous work

Several approaches to the problem of ranking for document retrieval have been proposed

previously. One approach has been to treat the problem of learning to rank as one of

structured classification [36, 66], where the aim is to directly optimize ranking measures

of loss. However, typical measures of loss are difficult to optimize directly [8], making the

problem of learning in this setting computationally difficult. Another approach has been

to approximate these ranking measures with smooth differentiable loss functionals by

formulating probabilistic models on pairwise preferences between objects (RankNet; [7]),

or on ordered lists of objects (ListNet and ListMLE; [9, 70]). It is worth noting that the

Chapter 5. Learning to rank with cumulative distribution networks 122

RankNet, ListNet and ListMLE methods are examples of Bradley-Terry and Plackett-

Luce models respectively. In the case of the RankNet model [7], the corresponding

probability over a pairwise preference α ≻ β is modeled by a logistic function so that if

each node to be ranked is provided with a feature vector xα and ρ(α) ≡ ρ(xα), we obtain

ℙ[α ≻ β] =
1

1 + exp
(

−
(

ρ(xα)− ρ(xβ)
)

) . (5.23)

The problem of learning in RankNet consists then of minimizing cross-entropy loss

L(ρ) = (1− P̂αβ)
(

ρ(xα)− ρ(xβ)
)

+ log



1 + exp
(

−
(

ρ(xα)− ρ(xβ)
)

)



, (5.24)

across all (α, β) pairs, where P̂αβ denotes the target probability of α ≻ β. We see

here that while the loss function used by RankNet is cross-entropy loss, the underlying

probability model corresponds to a Bradley-Terry model, which assumes that preferences

are independent of one another.

In the case of ListNet [9] and ListMLE [70], the probability of observing a partial

ordering α1 � · · · � αK objects are defined as products of functions of the type

ℙ(α1 � · · · � αK |D) =
K
∏

k=1

exp(ρ(xk))
∑K
j=k exp(ρ(xj))

=
K
∏

k=1

1

1 +
∑N
j=k+1 exp

(

−
(

ρ(xk)− ρ(xj)
)

) ,

(5.25)

which is a Plackett-Luce model. Thus we see here that previous methods for learning to

rank for document retrieval can be reformulated and viewed as particular instances of

the structured ranking learning framework using CDNs.

5.4.2 Learning to rank documents from queries

In the context of ranking documents in web search, the goal is to learn a ranking function

such that for a given query, the ranking function assigns a score to each document. Under

such a model, documents that are assigned a high score for a given query are likely to be

relevant to the query. Here we will apply the proposed structured ranking framework to

Chapter 5. Learning to rank with cumulative distribution networks 123

the problem of scoring documents in databases or in the context of web search. We will

focus on the OHSUMED dataset, which is a part of the Learning to Rank (LETOR) 2.0

benchmark [44]. The dataset consists of a set of query-document pairs, with a feature

vector and relevance judgment provided for each pair. Under our framework, we observe

the preference α ≻ β for a given observation if and only if document α received a higher

relevance rating yα than the rating for document β. Under our framework, the goal is to

find some function that takes the set of features and maps these to the real line so that

for a new query-document pair, a high score means the document is likely to be relevant

to the query. The proposed structured ranking learning framework allows one to define

a ranking function over query-specific features, so that for any query Dn we will suppose

that there is a query-specific feature vector xnα ∈ ℝ
L for each document α to be ranked.

Although each document α can receive different feature vectors for different queries, the

ranking function ρ will be shared across queries, enabling us to learn a model for scoring

documents. Furthermore, we will assume that the feature set will be shared across all

queries, with no missing values to be accounted for.

We will parameterize the ranking function using a parameter vector a, so that ρ ≡

ρ(x; a) with −∞ < ρ(x; a) < ∞. Here we will choose ρ(x; a) to be a Nadaraya-Watson

[52, 67] estimator with a Gaussian kernel, as such a ranking function allows for non-linear

estimates of document scores. The ranking function thus takes the form

ρ(x; a) =

∑

α∈Vn
K(xα,x; a)yα

∑

α∈Vn
K(xα,x; a)

, (5.26)

K(xα,x; a) = exp



− 1

2

(

x− xα
)T

A
(

x − xα
)



, (5.27)

with A = diag(a2
1, · · · , a2

L). For the chosen ranking function, we will assume that doc-

ument labels are comparable across queries, although this assumption in general is not

necessary and could be relaxed.

Consider a directed edge e = (α, β) in the order graph Gn for observation Dn and

Chapter 5. Learning to rank with cumulative distribution networks 124

define

re ≡ re(a;Dn) = ρ(xnα; a)− ρ(xnβ ; a). (5.28)

For the given order graph, we will model the structured loss functional L(θ;Dn) using a

CDN so that

L(θ;Dn) = − logFπ
(

r(ρ;Gn)
)

= −
∑

e,e′∈En
logφ(re(a;Dn), re′(a;Dn)), (5.29)

where θ is the parameter vector containing a and parameters for the CDN functions in

the network. While we can choose any CDN topology for connecting preference variables

to one another, we will model the joint CDF over preferences as a CDN in which there is

a function node for every pair of preference variables, so that each function is of the form

φ(r1, r2) so that every preference variable is connected to all other preference variables

via these functions. Thus, each pair of edges e, e′ in the order graph Gn has a CDN

function node φ(re, re′) connecting the corresponding preference variable nodes πe, πe′

in the CDN. In order for the CDN functions to satisfy the sufficient conditions for the

CDN to model a valid CDF (Lemma 3.1.1), we will opt for each function φ(r1, r2) is be

a bivariate sigmoidal function so that

φ(r1, r2) =
1

1 + exp(−u1r1) + exp(−u2r2)
, u1, u2 ≥ 0, (5.30)

as this will simplify both representation and computation. For the given CDN and

ranking functions, the learning problem then becomes

min
a,u1,u2

N
∑

n=1

∑

e,e′∈En
log



1 + exp
(

− u1re(a;Dn)
)

+ exp
(

− u2re′(a;Dn)
)



 s.t. a ≥ 0

u1, u2 ≥ 0

‖a‖1 ≤ t,

(5.31)

where we have added an L1-norm regularizer on the ranking function parameters a using

the constraint ‖a‖1 ≤ t. In order to minimize the above loss functional, we will use

Chapter 5. Learning to rank with cumulative distribution networks 125

a stochastic gradient descent algorithm [6]. For a given observation Dn, the gradient

∇aL(θ;Dn) is given by

∇aL(θ;Dn) = −
∑

e,e′∈En

1

φ(re, re′)

(

∂re

[

φ(re, re′)
]

∇are(a;Dn) + ∂re′

[

φ(re, re′)
]

∇are′(a;Dn)
)

,

(5.32)

with

∂re

[

φ(re, re′)
]

= −u1 exp(−u1re) φ(re, re′)

∂re′

[

φ(re, re′)
]

= −u2 exp(−u2re′) φ(re, re′)

∇are(a;Dn) = ∇aρ(xα; a)−∇aρ(xβ ; a)

∇aρ(x; a) = a

∑

α∈Vn

(

yα − ρ(x; a)
)

‖x− xα‖2K(xα,x; a)

∑

α∈Vn
K(xα,x; a)

.

The derivatives with respect to the CDN function weights u1, u2 are then given by

∂u1

[

L(θ;Dn)
]

= −
∑

e,e′∈En
re exp

(

− u1re
)

φ(re, re′)

∂u2

[

L(θ;Dn)
]

= −
∑

e,e′∈En
re′ exp

(

− u2re′
)

φ(re, re′).

5.4.3 Performance measures for ranking

In order to assess the utility of the proposed framework and to compare the performance

of our proposed framework to other methods, we will use the following three metrics

commonly in use in information retrieval research:

1. Precision For a given query, the precision at k, or P (k) measures how many of the

top-ranking k documents are relevant to the query. More formally,

Precision(k) =
Number of relevant documents in the top k results

k
. (5.33)

For the OHSUMED collection, the categories definitely relevant and partially rele-

vant are both counted as relevant for the purposes of computing the above.

Chapter 5. Learning to rank with cumulative distribution networks 126

2. Mean Average Precision (MAP) For a given query with K labelled documents,

the average precision (AP) is the average of the precision values for all relevant

documents:

AP =

K
∑

k=1

P (k) · I(kthdocument is relevant)

Number of relevant documents for the observation
, (5.34)

where I[·] is equal to 1 if its argument holds true and is 0 otherwise. The MAP

score is then computed by averaging the AP scores over all queries.

3. Normalized Discounted Cumulative Gain (NDCG) Recently, this performance mea-

sure has been proposed [34] to address the fact that the above metrics only distin-

guish between relevant and not relevant categorical labels, although different levels

of relevance exist for any given set of documents. In addition, the NDCG also puts

more weight on highly relevant documents than marginally relevant ones, as the

less relevant a document is, the less likely a user is to examine it. The NDCG

metric for a ranked list of K documents with labels r(j) is given by

NDCG(k) = Zk
k
∑

j=1

2r(j) − 1

log2(j + 1)
, (5.35)

where Zk is a normalization constant to ensure that NDCG(k) = 1 for the perfect

ordering of documents.

5.4.4 The OHSUMED dataset

The OHSUMED collection [24] is a standard benchmark dataset for information retrieval

research that is provided as a part of the LETOR 2.0 benchmark [44]. The OHSUMED

collection is a subset of MEDLINE, a database on medical publications. The collection

consists of 348,566 records (out of over 7 million) from 270 medical journals. The fields

of a record include title, abstract, MeSH indexing terms, author, source, and publication

type. There are 106 queries, each with a number of associated documents. Each query is

Chapter 5. Learning to rank with cumulative distribution networks 127

related to a medical search need, and thus is also associated with patient information and

topic information. The relevance degrees of documents with respect to the queries are

judged by humans, on three levels: definitely relevant, partially relevant or not relevant.

There are a total of 16,140 query-document pairs with relevance judgments and 25 query-

specific features for each document-query pair including term frequency, document length,

BM25 and LMIR features as well as combinations thereof [2, 60, 71].

5.4.5 Experimental setup

The OHSUMED dataset is provided in the form of five training/validation/test splits

with 63/21/22 observations each. To ensure that features are comparable across all ob-

servations, for each observation we normalized each feature vector within the observation

so that for feature i,

x̃nα,i =
xnα,i − min

β∈Vn
xnβ,i

max
β∈Vn

xnβ,i − min
β∈Vn

xnβ,i
. (5.36)

We performed learning of our model using a constrained stochastic gradients algorithm

where we prevent updates from violating the inequality constraints in the optimization

problem defined by Equation (5.31). In the case where an update is infeasible, our algo-

rithm iteratively reduces the learning rate η until either the update becomes feasible or

some maximum number of iterations have passed, at which point the algorithm performs

no update. We set the default learning rate to η = 0.5 and we randomly initialized

the model parameters a, u1, u2 in the range [0, 1]. The above optimization procedure was

carried out for 10 epochs and η was scaled by 1√
2

at the end of each epoch. We performed

learning for the range of regularization parameters t = {25, 26, · · · , 40}. Once we have

finished learning from the training data for a given value of t, we score the documents in

the validation set. We then select the ranking function defined by a∗ corresponding to

the regularization parameter t∗ that maximizes the MAP metric on the validation set.

Finally, we score all the documents in the test set using a∗, after which we compute the

Chapter 5. Learning to rank with cumulative distribution networks 128

above performance metrics.

(a)

(b)

Figure 5.11: a) Average NDCG as a function of truncation level k for the OHSUMED dataset.

NDCG values are averaged for test data over five cross-validation splits; b) Average precision

as a function of truncation level n for test data averaged over five cross-validation splits.

Chapter 5. Learning to rank with cumulative distribution networks 129

We tested the CDN in which the joint CDF over preference variables is given by

a product over pairwise functions φ(r1, r2) where all pairs of preference variables in

the model have a corresponding function node in the CDN graph. We also tested a

Bradley-Terry model that models preferences as being pairwise independent. The above

performance metrics are shown in Figures 5.11(a), 5.11(b) and 5.12 in addition to the

performances of seven methods that are part of the LETOR 2.0 benchmark. With the

exception of ListNet and ListMLE, the above methods do not explicitly model statistical

dependence relationships between pairwise preferences. As can be seen, accounting for

additional statistical dependence relationships between pairwise preferences provides a

significant gain in performance compared to modelling preferences as being independent

using the disconnected CDN. This can be seen by noting that the problem of ranking

contains statistical dependence relationships amongst pairwise preferences, so that the

score Sα assigned to one node α can only be determined given the scores of all other

nodes. Thus by using a CDN in which preferences are connected to one another, we are

able to capture such dependence relationships, whereas in a disconnected CDN we lose

the ability to do so.

5.4.6 Discussion

We have described here an application of the structured ranking learning framework to

the problem of document retrieval. Here we chose to make use of multivariate sigmoids as

CDN functions and a Nadaraya-Watson estimator as a ranking function. It is interesting

to note that the hinge loss used by other methods for learning to rank such as that of [22] is

a limiting case of a sigmoid function. An example of this for a single preference variable is

shown in Figure 5.13. The relationship between the hinge loss and the sigmoidal function

suggests that multivariate CDN functions can be viewed as being differentiable analogs

of multivariate hinge loss functions. An interesting avenue for future work would involve

developing a large-margin analog to the structured ranking learning framework proposed

here and comparing this to the structured large margin framework of [66].

Chapter 5. Learning to rank with cumulative distribution networks 130

Figure 5.12: Mean average precision value for test data for several methods on the OHSUMED

benchmark.

0
r

Lo
ss

log−CDF
Hinge
0−1

Figure 5.13: Comparison of the 0-1 loss, hinge loss and log-CDF loss for a single preference

r, where the CDF is modeled as a sigmoid
1

1 + exp(−r) .

Having applied the structured learning framework to the problem of document re-

trieval, we will now turn to the problem of regulatory sequence search in computational

systems biology. For this class of problems, the semantics of learning to rank will prove

Chapter 5. Learning to rank with cumulative distribution networks 131

useful in formulating efficient methods for discovering regulatory sequences using multiple

data sources.

5.5 Application: Regulatory sequence search

in computational systems biology

A fundamental problem in computational systems biology is to discover the complex

roles of biological sequences such as DNA binding sites [11, 61], microRNA target sites

[27, 29] and genetic variants [28]. In this setting, we wish to discover some subset of the

set of sequences S that are relevant for a particular biological process given information

pertaining to each sequence. Thus the problem of discovering relevant sequences can

be viewed as a problem of ranking, to which we have applied the structured ranking

framework using CDNs. In this section we will model a sequence as an ordered set of

elements of an alphabet A, so that any sequence s of length L satisfies s ∈ AL. In the

case where the sequence is one of nucleotides, the alphabet is given by A = {A,C,G, T}

so that an example of a sequence is ACCGTGACTG.
We will assume that each sequence in the set S may also be provided with additional

features. For example, in the case where we wish to discover microRNA targets, a

sequence may correspond to the entire 3’ untranslated region (3’UTR) for a particular

gene, so that one has access to the sequence of the 3’UTR, as well as other features

for the 3’UTR sequence. These can include its level of expression across many tissues,

the abundance of proteins that are translated from the sequence preceding the 3’UTR

and the expression of a microRNA that putatively targets a site in the 3’UTR sequence.

An example of how such features would be extracted is given in Figure 5.14 where we

have assigned a node α for the pair sα,xα. Thus we can assume that each node α has

a corresponding sequence sα ∈ S and a corresponding set of features xα. The features

xα can include quantitative features such as the target sequence accessibility [38], the

Chapter 5. Learning to rank with cumulative distribution networks 132

neighboring context of sequences [20] or other quantitative profiling data [11, 15, 27, 61,

65]. The problem we wish to solve here consists of combining features from multiple

types and sources of data for the purpose of discovering some subset of the regulatory

sequences S that are relevant for a given biological process. In addition to accounting

for diverse features, incorporating the large number of computational predictions already

available is also desirable.

Figure 5.14: Feature extraction for nodes in the order graph. Each node α has a corresponding

sequence sα and a set of corresponding features that are relevant to ranking the sequence.

For the example shown, the sequence sα may correspond to the sequence for the entire 3’

untranslated region (3’UTR) of a gene, so that the feature vector xα include the expression of

the gene carrying the sequence, the abundance of protein produced from the coding region for

the gene carrying the sequence and the expression of a putative microRNA that targets the

sequence.

Chapter 5. Learning to rank with cumulative distribution networks 133

5.5.1 Previous work

In recent years, many different methods have been proposed to address the problem

of integrating together heterogeneous datasets in the context of discovering regulatory

sequences. In particular, probabilistic generative models have been proposed in which

sequence discovery consists of inference and learning [27, 61] given sequence and expres-

sion data. While such methods do explicitly model the impact of sequences on gene

expression in the presence of many latent random variables, a major challenge is to ac-

count for newer datasets as well as new sources of regulatory variability. Each additional

dataset to be analyzed is likely to introduce a significant number of additional parameters

and hidden variables, dramatically increasing the cost and complexity of inference and

learning. As the number of types and sizes of data continue to increase, it is likely that

both model misspecification and prohibitive computational complexity will hamper the

practicality of probabilistic latent variable models. Owing to the difficulty in develop-

ing purely sequence-based models of regulatory sequences, a major challenge is then to

incorporate additional data types under a unified tractable and principled framework.

5.5.2 Discovering regulatory sequences as a problem of learning to

rank

A strategic approach to the above problem can be obtained by noting that the problem of

discovering regulatory sequences is inherently a problem of learning to rank, whereby we

are given a large number of candidate sequences and only some relatively small number

are of biological significance. Furthermore, there is often a well-defined notion of prefer-

ence between sequences. An example of this arises in the binding of transcription factors

to binding sites, whereby some sites are more strongly bound than other sites by certain

transcription factors. Thus when discovering sequences, it is desirable to explicitly model

the fact that sequences do not fall into two distinct categories of positives and negatives

Chapter 5. Learning to rank with cumulative distribution networks 134

but instead have different degrees of significance attached to them, so that a plausible

model should assign a higher score for sequences with higher importance.

Some methods have in fact formulated the problem of discovering sequences as one

of ranking sequences, or sequence search, so that they assign a score to each sequence

with the assumption that high-scoring sequences are more likely to be biologically rele-

vant than low-scoring ones. The idea of discovering sequences using an explicit ranking

formulation has been explored previously by [4, 11, 65] in the context of using the or-

derings obtained from microarray intensities to learn position-specific scoring matrices

(PSSMs) for transcription factor binding sites. This was shown to significantly improve

predictive accuracy with respect to other model-based methods, as no assumptions on

the functional relationship between intensities and sequences needed to be made in order

to learn to rank sequences. The improved accuracy of such ranking-based methods with

respect to model-based methods suggests that a good method for discovering sequences

would be one specifically tailored to the problem of learning to rank.

Given the above methods for ranking sequences, our goal in this section is to expand

on previous work along three fundamental directions. First, we address the structured

nature of the problem of ranking, since the rank of one sequence can only be determined

given the ranks of all sequences so that complex statistical dependence relationships ex-

ist between variables in the model. Second, the scoring function used by the previous

methods of [4, 11, 65] was parameterized by a PSSM and so was restricted to sequence

inputs. Here we will expand on this idea to allow for rich feature spaces obtained from

quantitative measurements such as expression profiling data. Lastly, by formulating the

sequence search problem as one of ranking, we can leverage information across several ex-

perimental datasets and diverse prediction methods via the orderings over sequences that

each provides. Under the framework of learning to rank, orderings provided by diverse

computational methods and those provided by experimental data are all comparable and

readily accounted for, even if scores and labels between different prediction methods and

Chapter 5. Learning to rank with cumulative distribution networks 135

datasets may be difficult to compare. Thus, given that we observe many different par-

tial orderings provided by diverse datasets and prediction methods, our aim will be to

predict orderings over sequences so that sequences that are often highly ranked across

observations should also be highly ranked by our method. The proposed framework of

ranking then offers three significant advantages over previous model-based approaches

for sequence search. First, as in [4, 11, 65], it makes minimal assumptions about the

relationships between sequences and measured/predicted labels for the sequences and so

largely avoids the issue of model misspecification. Second, it allows us to leverage or-

derings provided by heterogeneous datasets and prediction methods that may have little

overlap with one another in the sequences they contain, but may nevertheless informative

when combined together under a single model. Lastly, predictive accuracy is improved

by explicitly modelling the statistical dependence relationships involved in learning to

rank.

To model the structured nature of the ranking problem, we can take advantage of the

structured ranking learning framework. In the context of discovering sequences, we can

then interpret a set of prediction methods and a set of experimental measurements as

observations that convey partial orderings over some subset of the sequences of interest.

Thus we present STORMSeq, a method formulated using the structured ranking learning

framework that scores sequences given a set of features and a set of orderings over subsets

of the sequences to be ranked. The outline of the method is shown in Figure 5.15. Our

method expands the RankMotif++ method of [11] to a structured learning setting where

we can A) account for the statistical dependence relationships in the problem of ranking,

B) we can incorporate rich feature spaces such as quantitative measurements of mRNA

and protein expression in addition to sequence data, and C) we can account for diverse

computational prediction methods as additional sources of data for learning. We will

apply the proposed framework to the problems of scoring transcription factor binding

sites and microRNA targets, although the framework is general enough to be applied

Chapter 5. Learning to rank with cumulative distribution networks 136

Figure 5.15: The STructured ranking of Regulatory Motifs and Sequences (STORMSeq)

method. Given multiple independent observations conveying various orderings over sequences

and given the observed sequences and input features extracted for each observation (e.g.:

mRNA, microRNA and protein measurements, sequence context features), STORMSeq learns

a ranking function such that the probability of generating the observed orderings is maximized.

to a wide variety of bioinformatics problems, such as ranking therapeutic drug targets,

finding genetic associations or scoring protein-protein interactions.

5.5.3 STORMSeq: STructured ranking of

Regulatory Motifs and Sequences

Suppose that we are given a set of N observations D = {D1, · · · , DN}, where each

observation Dn provides an ordering of the sequences in some subset Sn ⊆ S. Here, an

observation corresponds to any set of quantitative values that convey some meaningful

Chapter 5. Learning to rank with cumulative distribution networks 137

ordering of the sequences to be ranked. For example, in the context of scoring sequences

bound by transcription factors, orderings might be provided by microarray intensities

[4], which provide a measurement of the concentration of transcription factors binding

to any given sequence. For a given observation, we can then represent the ordering of

sequences as an order graph as described previously. The structured ranking learning

proposed in Section 5.3 can then be directly applied in which we learn a ranking function

ρ(α) from the observations D = {D1, · · · , DN}. In the next section we will describe how

the ranking function ρ can be made to account for additional information that may be

provided for each sequence to be ranked,.

5.5.4 Ranking using sequence and quantitative features

In order to adapt the structured ranking learning framework to the problem of ranking

sequences where we are given both sequence information sα and a feature vector xα, the

ranking function ρ(α) will be given the general form

ρ(α) = ρseq(sα; M) + ρquant(xα; w), (5.37)

where ρseq, ρquant are functions that assign scores to the sequence sα and its corresponding

feature vector xα. Here, it is possible to specify different parametric forms for ρ(α) that

assign scores to sequences under various assumptions. In order to score any given node α

based on sequence sα alone, we will consider the sum of contributions of subsequences of

sα under the assumption that each subsequence contributes independently to the overall

score for sα. Suppose we are given a sequence sα of length Lα. Let sk:k+K−1
α be a

subsequence of length K of sα starting at position k of sα and let sjα ∈ A be the symbol

observed at position j in sequence sα. Given a position-specific scoring matrix (PSSM)

M ∈ ℝ
K×|A| of length K where Mk,a is equal to the probability of emitting symbol a ∈ A

at position k of the PSSM, we can define the score for sα as the probability of emitting

Chapter 5. Learning to rank with cumulative distribution networks 138

at least one subsequence of length K in sα, so that

ρseq(sα; M) = log



1−
Lα−K+1
∏

k=0

(1− P (sk:k+K−1
α |M))



, (5.38)

where P (sk:k+K−1
α |M) =

∏k+K−1
j=k Mj,sjα is the probability of binding to subsequence

sk:k+K−1
α according to the distribution specified by M. In the case where we are pro-

vided with quantitative features in the form of a feature vector xα, we can define the

ranking function ρquant(xα; w) to be a linear function of the quantitative features, so

that ρquant(xα; w) = wTxα. Thus the above parameterizations for the ranking functions

ρseq(sα; M), ρquant(xα; w) allow us to account for the influence of sequence information

in addition to quantitative features on the score to be assigned to any given sequence.

To address the problem of learning the functions ρseq, ρquant, we will use the stochastic

gradient descent algorithm which was also applied to the document retrieval task. For

the function ρseq, the derivative of the ranking function ρseq(sα; M) with respect to the

parameter Mk,a is given by

∂ρseq(sα; M)

∂Mk,a
=

1− exp
(

ρseq(sα; M)
)

exp
(

ρseq(sα; M)
)





∑

i

P (si+1:i+K
α |M)

1− P (si+1:i+K
α |M)

(

[si+kα = a]− P (a|M)
)



.

(5.39)

For the ranking function ρquant, the gradient is given simply by ∇wρquant(xα; w) = xα.

Once we have computed both of the above gradient vectors, we can form the gradient of

the ranking function ρ as

∇θρ(α; θ) =

[

∇Mρseq(sα; M)
∇wρquant(xα; w)

]

, (5.40)

where θ is the parameter vector whose elements correspond to elements of M and w.

Thus given the above parameterizations, a sequence sα will have a higher score if both ρseq

and ρquant assign high scores based on sequence sα and features xα respectively. Given

the above gradient vector, we can then estimate θ in addition to the CDN function

parameters using a stochastic gradient descent algorithm where we iteratively update

the parameter vector θ for each observation in our training set.

Chapter 5. Learning to rank with cumulative distribution networks 139

To summarize, given a training set of observations consisting of orderings over se-

quences to be ranked and their associated quantitative features, the goal is to learn

a ranking function ρ(α) that maximizes the probability of generating the observed or-

derings by assigning higher scores to those sequences that are most consistently highly

ranked in the training set of observations. The ranking function accounts for sequence

data in addition to other quantitative features such as expression measurements. The

structured loss functional then allows us to account for the statistical dependence rela-

tionships between preference variables. We emphasize at this juncture that STORMSeq

has been formulated in a general way so that it is applicable to several problems in which

we wish to learn a ranking function for sequences using both multiple instances of order-

ings, sequence data and other quantitative features. To illustrate how STORMSeq might

be used in practice, we will apply the proposed structured ranking learning framework

to the problem of searching for transcription factor binding sites. Before we proceed,

it will be instructive to study the relation between STORMSeq and a previous method

for learning to rank sequences from orderings over sequences obtained from microarray

measurements.

5.5.5 The RankMotif++ model as a cumulative distribution network

It is worth noting that in the RankMotif++ model of [11], the objective being minimized

corresponds to the log of a joint CDF over preferences, under the assumption that the

preferences are independent. More precisely, in RankMotif++ the loss function is given

by L(θ) = logFπ(r(Dn)), where the probability over all pairwise preferences α ≻ β is

modeled by a product over logistic functions of rαβ = ρ(α)− ρ(β) so that

Fπ(r(Dn)) ≡ ℙ

[

π ≤ r(Dn)
]

=
∏

s

1

1 + exp(−νrs)
=
∏

α≻β

1

1 + exp
(

− ν
(

ρ(α)− ρ(β)
)) ,

(5.41)

with ρ(α) = ρseq(sα) and ν > 0. We have previously identified probability models

of this type as Bradley-Terry models (Section 5.3.2), so that the above loss function

Chapter 5. Learning to rank with cumulative distribution networks 140

can be modeled using a disconnected CDN where each function node corresponds to

φs(rs) =
(

1 + exp(−νrs)
)−1

and all pairwise object preferences are modeled as being

independent of one another.

5.5.6 Discovering transcription factor binding profiles

Transcription factors (TFs) are of significant interest in molecular biology and immunol-

ogy, as they consist of proteins that bind to specific nucleotide sequences in order to

regulate the activity of genes carrying these sequences [11]. Due to the short nature of

these regulatory sequences in comparison to the size of a typical genome, the problem of

discovering transcription factor binding sites remains a significant challenge in compu-

tational molecular biology. Here we will apply the proposed structured ranking learning

framework to the problem of ranking sequences bound by TFs using measurements from

protein binding microarray (PBM) experiments. In this problem, we will make use of

sequence data alone so that a fair comparison can be made with existing methods for

discovering regulatory motifs from PBM data using sequence.

Data processing

We obtained PBM data from the Supplementary Material section of [4], which consisted of

intensity measurements for 35-mer nucleotide probes bound by five different transcription

factors Cbf1, Ceh-22, Oct-1, Rap1, Zif268 across two experimental replicate arrays Array

1 and Array 2. The PBM data consisted of intensity measurements yα for a set of

sequences sα ∈ S, where each probe on the array is indexed by α, so that sα denotes

the nucleotide sequence of a given probe on the array. Thus for this problem the set

A = {A,C,G, T}. We used the array labeled Array 1 as our training data and the probe

measurements from Array 2 as test data. We normalized the microarray intensity data

in both sets by first shifting microarray intensities such that the minimum intensity was

equal to one, then applying a log-transformation, as was done in [11]. We labelled the

Chapter 5. Learning to rank with cumulative distribution networks 141

250 probe sequences that had the highest measured intensity as positives and the 250

sequences with the lowest normalized intensities as negatives. We then constructed the

order graph over these 500 sequences based on preferences assessed using the criteria

used by [11]. Briefly, we computed the median absolute deviation (MAD) m of the 500

normalized intensities and asserted α ≻ β if yα > yβ + 3σ and at least one of sα, sβ

were labelled as positive sequences as described above, where σ = m/0.6745 and 0.6745

is the MAD of the standard normal distribution. Given order graphs constructed in

this fashion, the goal is to then learn a ranking function that assigns scores under the

assumption that higher scores should indicate an increased affinity of a TF for a given

sequence.

Experimental setup

Using the sequence ranking function ρseq(sα; M) for a fixed PSSM of length K, we ran

STORMSeq and RankMotif++ using three random initializations each, whereby we then

selected the model that maximized the Spearman correlation with the training data

as was done in [11]. For each initialization, the PSSM M was initialized to a set of

random positive values and then normalized so that
∑

a∈A
Mk,a = 1 ∀ k = 1, · · · , K. The

MatrixREDUCE, MDScan and Prego methods [15, 45, 65] were then applied to the

training data using the parameters specified in [11] and the resulting PSSM models were

selected using the same Spearman correlation criterion as above. For all models, we varied

K from 7 to 13 and selected the value ofK that optimized the above Spearman correlation

criteria. We ran STORMSeq for 100 epochs using the constrained stochastic gradients

optimization method from Section 5.4.2. The learning rate was set to ηt = 0.1 with a

decay rate of 1/t at the end of each epoch t. Our loss functional was chosen to be the one

proposed in Equation (5.18) with a CDN containing pairwise functions φ(r1, r2) as in the

previous information retrieval application where all preference variables are connected to

one another via the functions φ(r1, r2). Here we imposed the additional constraint on the

Chapter 5. Learning to rank with cumulative distribution networks 142

CDN parameters so that u1 = u2 = ν. In order to provide regularization on the CDN

parameter ν, we set the constraint 0 < ν ≤ 1. We also enforced the constraints that

0 < Mk,a < 1 for all k = 1, · · · , K and a ∈ A and
∑

a∈A
Mk,a = 1.

(a)

(b)

Figure 5.16: a) Out-of-sample precision versus recall using five different methods for the Cbf1,

Ceh-22, Oct-1, Rap1, Zif268 transcription factors studied in [4, 11]. The methods shown are

MatrixREDUCE (red), MDScan (cyan), Prego (green), RankMotif++ (black) and STORM-

Seq (blue); b) The corresponding curves showing Normalized Discounted Cumulative Gains

(NDCG) versus the truncation level, or the number of top-ranking sequences. Both a) and

b) show that by ranking in a structured learning setting using STORMSeq, we generally im-

prove predictive accuracy, in terms of precision, recall and NDCG, with respect to the other

unstructured learning methods shown here.

The performance of all five methods for the above five TFs are summarized in Figures

5.16(a) and 5.16(b) using precision/recall for assessing performance We also assessed

predictive performance using the NDCG metric for ranking that we used in the document

Chapter 5. Learning to rank with cumulative distribution networks 143

retrieval task. The use of the NDCG metric here is well-suited to the problem at hand,

as the truncation level n can be interpreted as the number of sequences to be further

validated or analyzed, so that a higher NDCG value is obtained if the most significant

sequences appear at the top of the list in the correct order of significance. In the context

of PBM array experiments, the significance of a sequence is determined by the strength

with which a transcription factor binds to it, so that the highest score should be assigned

to the most strongly bound sequence. In addition to the these plots, we also show the

Area Under the precision-recall Curve (AUC) in the heatmap display of Figure 5.17.

M
at

rix
R

E
D

U
C

E

M
D

S
ca

n

P
re

go

R
an

kM
ot

if+
+

S
T

O
R

M
S

eq

Cbf1
Ceh−22

Oct−1
Rap1

Zif268 0.5
0.6
0.7
0.8
0.9

Figure 5.17: Heatmap of the Area Under the precision-recall Curve (AUC) for the five tran-

scription factors and for the five methods.

The corresponding PSSMs found by each of the above methods are shown in Figure

5.18. As can be seen, the PSSMs learned by STORMSeq are generally consistent with

those found by the other methods as well as with PSSMs previously reported for this

dataset [4, 11]. Figures 5.16(a), 5.16(b) and 5.17 demonstrate that by ranking in a struc-

tured setting and by making no particular assumption about the relationship between

sequence PSSMs and measured PBM intensities, we can increase predictive accuracy as

Chapter 5. Learning to rank with cumulative distribution networks 144

measured by precision, recall and NDCG compared to the other unstructured predic-

tion methods such as RankMotif++. In particular, the AUC’s achieved by our method

exceeds that of RankMotif++ for four of the five transcription factors and equals its per-

formance for the Cbf1 transcription factor. Furthermore, according to the NDCG metric,

our method of ranking also has increased accuracy in terms of the ranking itself, so that

sequences with higher intensities are more likely to be ranked higher by STORMSeq than

by the other models.

Figure 5.18: Position weight matrices found by the MatrixREDUCE, MDScan, Prego,

RankMotif++ and STORMSeq methods (rows) for each of the five transcription factors Cbf1,

Ceh-22, Oct-1, Rap1, Zif268.

Having applied the structured ranking learning framework to the problem of dis-

covering transcription factor binding sites, we will also demonstrate the usefulness of

STORMSeq for discovering microRNA targets, which also consist of short nucleotide

sequences that regulate the activity of genes.

5.5.7 Discovering microRNA targets

MicroRNAs consist of molecules of 22-25 nucleotides that target mRNA transcripts

through complementary base-pairing to short target sites, in a fashion analogous to the

Chapter 5. Learning to rank with cumulative distribution networks 145

operation of transcription factors. However, unlike transcription factors, microRNAs are

generally inhibitory in their activity, so that microRNA activity generally represses the

activity of their target genes either by reducing the abundance of their target mRNA

transcripts or by repressing translational activity of their target mRNAs [1, 27]. There is

substantial evidence that microRNAs are an important component of the cellular regu-

latory network, providing a post-transcriptional means to control the amounts of mRNA

transcripts and their protein products [1, 20, 27, 38]. As a consequence of their important

role in gene regulation, many previous methods have been proposed for finding the targets

of microRNAs [20, 27, 33, 40]. In this section, we will formulate the problem of finding

microRNA targets as one of ranking and we will apply the structured ranking learning

framework for the let-7b microRNA and its putative targets. In addition to sequence

data, we will make use of mRNA, microRNA and protein abundance measurements in

order to rank microRNA-target interactions.

Data processing

Here we will use a dataset profiling the expression of human mRNAs after transfection

of a synthetic RNA duplex of the mature let-7b hairpin into WERI-Rb1 retinoblastoma

samples [27]. Under the assumption that microRNA regulation causes a reduction in

mRNA expression, pairwise preferences between sequences were asserted using the MAD

criterion used for the above analysis of transcription factors, but using negative log-

expression-ratios of expression from the let-7b transfections instead. Thus the score

assigned to a sequence by a good model should correlate with the amount of down-

regulation by let-7b.

We focused here on the human genes in the WERI-Rb1 transfection experiment of

[27] that A) had 3’UTR sequence information provided by Ensembl and B) were provided

with both mRNA expression and protein abundance data in 3,636 paired mRNA-protein

expression profiles obtained from cDNA microarray and mass-spectrometry across brain,

Chapter 5. Learning to rank with cumulative distribution networks 146

heart, liver, lung and placenta tissue pools in mouse [39, 72]. This yielded a total of

799 human 3’UTR sequences that satisfied the above desiderata. We then selected the

400 sequences with the lowest log-expression ratios as positives and labelled the other

399 genes as negatives. As with the preceding analysis of transcription factor binding

sites (Section 5.5.6), we wish to assess the out-of-sample predictive performance of our

method, so that we selected a random sample of 250 positive sequences for our training

data and the remainder for the test data. Similarly, we selected 250 sequences from the

negative group for our training set and the rest for the test data. We thus formed five

independent training/test splits in this fashion.

In contrast to the previous problem, where we had relatively few sources of data

variability, here we are provided with in vivo expression measurements of genes that

may have several different regulators, some of which may themselves be regulated by

let-7b. The problem of scoring microRNA targets is thus an example of the type of

the problem commonly encountered in genomics, where the goal is to discover sequences

in the presence of many sources of in vivo regulatory variability. The hypothesis here

is that we can leverage additional information in the form of independent quantitative

measurements and computational predictions in order to better account for the variability

in orderings over sequences.

To learn to rank microRNA targets, we will use human 3’UTR sequence data, mouse

mRNA expression [72], mouse let-7b expression [1] and mouse protein abundance data

[39] across brain, heart, liver, lung and placenta tissue pools, whereby the mouse mRNAs

being profiled are homologs of the human mRNAs from the WERI-Rb1 assay. Further-

more, the expression for the let-7b microRNA in the above tissue pools corresponds to

that of mouse homolog for let-7b. Expression and abundance values from the above three

datasets were processed according to the guidelines in [1, 39, 72].

In addition to expression features, we would also like to account for other contextual

sequence features, such as microRNA site accessibility as measured by the energy score

Chapter 5. Learning to rank with cumulative distribution networks 147

∆∆G. To this end, we ran the algorithm of [38] for computing ∆∆G for each 3’UTR

sequence given the mature let-7b sequence using the default algorithm settings provided

by the authors of [38]. To obtain a ∆∆G score for the entire 3’UTR, we summed the

∆∆G scores for each putative microRNA target site in the 3’UTR. Combined with the

above mRNA, microRNA and protein abundance features, this yielded a total of 16

quantitative features for each sequence to be scored. Thus for this problem, each 3’UTR

sequence corresponds to a putative let-7b-target interaction so that let-7b putatively

targets at least one target site in the 3’UTR sequence. The above 16 features thus form

the feature vector xα, which we will use for learning to rank targets.

Incorporating diverse computational predictions

In addition to the above features, we would like to also incorporate computational target

predictions for let-7b from the PicTar [40], TargetScan [20] and RNA22 [33] sequence-

based methods. Each of these methods makes use of various criteria such as conservation

and contextual sequence features to assign scores to candidate microRNA targets. The

scores output by any of these prediction methods can be thus used to generate an or-

der graph over sequences, so that each method provides a partial ordering over some

subset of microRNA-target interactions. The proposed framework of structured ranking

learning then allows us to combine diverse computational predictions under one unified

probabilistic framework.

We downloaded computational microRNA target predictions for let-7b from the Sup-

plementary Data resources for the TargetScan [20], PicTar [40] and RNA22 [33] al-

gorithms. Preferences were established between 3’UTR sequences by summing over

microRNA-target site scores within the given 3’UTR sequence for a given prediction

method and then comparing total scores between 3’UTR sequences. Thus, for a given

computational prediction method, the preference α ≻ β was established between two

3’UTR sequences sα, sβ if sα had a higher score than sβ according to the prediction

Chapter 5. Learning to rank with cumulative distribution networks 148

method and at least one of sα, sβ were labelled as a positive sequence as described above.

For each of the five training datasets, we ran STORMSeq with K = 7 and selected

the best model out of three random restarts via the Spearman correlation between the

learned ranking function scores and the orderings seen in the training data. We used

the same experimental configuration as in the case where we ranked sequences using

PBM data, with the additional constraint on weights w, so that we set an additional

L1-norm constraint of ‖w‖1 ≤ 50. As before, the loss functional was chosen to be the

one proposed in Equation (5.18) with a CDN containing pairwise functions φ(r1, r2)

connecting all preference variables to one another, with the additional constraint on the

CDN parameters so that u1 = u2 = ν.

Given all of the above, we applied STORMSeq under three settings, where A) we use

only sequence information, B) we use both sequence and quantitative features (mRNA

and microRNA expression, protein abundance and ∆∆G) and C) we use both quantita-

tive features and sequence in addition to information provided by diverse computational

prediction methods. For each of the five train/test datasets, we computed precision and

recall for each of these experimental settings. The resulting precision and recall curves,

averaged over the five test sets, is shown in Figure 5.19. As can be seen, incorporating

sequence data, quantitative features and computational predictions yields an improve-

ment in predictive accuracy compared to using sequence alone or sequence in tandem

with quantitative features. This indicates that by leveraging multiple sources of informa-

tion about microRNA regulation, we can significantly increase the accuracy with which

we discover microRNA targets. In order to establish a reference method with wh9ich

to compare the above settings for STORMSeq, we also applied a simple technique for

scoring 3’UTR sequences by counting the occurrence of different 7-mers in each sequence

and then ranking the 3’UTRs by the counts. Thus we examined counts of all possi-

ble 7-mers for the 3’UTRs in each training set, then selected the 7-mer which achieved

the best Spearman correlation with the mRNA expression measurements in the training

Chapter 5. Learning to rank with cumulative distribution networks 149

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Recall

P
re

ci
si

on

7−mer count

Sequence features

Sequence & quantitative features

Sequence & quantitative features & prediction algorithms

Figure 5.19: Average out-of-sample precision versus recall for different STORMSeq learn-

ing configurations using expression data for mRNAs in response to let-7b transfection [27].

Curves are shown as the average precision and recall over five training and test data sets. By

incorporating additional sources of sequence information, sequence context and quantitative

profiling features, STORMSeq achieves higher accuracy (blue) than using sequence data alone

(green), sequence data combined with quantitative features without computational predictions

as additional data (red), or by using counts of 7-mers in the 3’UTR sequences (black).

data. The average precision and recall of the resulting 7-mer on test data, averaged over

five test datasets, is shown in Figure 5.19. Here we see that while this simple technique

can outperform STORMSeq using only sequence information, but underperforms with

respect to STORMSeq using additional quantitative features and prediction methods.

As additional validation, we show the cumulative distribution of ∆∆G scores between

the let-7b microRNA and target mRNAs in our dataset for the top and bottom 100 targets

ranked according to STORMSeq (Figure 5.20(a)). We expect a priori that sequences with

lower ∆∆G score are more likely to be bound by a targeting microRNA than not. As

Chapter 5. Learning to rank with cumulative distribution networks 150

can be seen, high-scoring targets have a significantly lower average ∆∆G value than low-

scoring targets (P < 10−20, Wilcoxon-Mann-Whitney), demonstrating that the targets

discovered by STORMSeq are likely to be genuinely targeted by let-7b. Furthermore,

the protein abundances for the top and bottom 100 targets differed significantly (P =

7.73×10−4), adding support for the hypothesis that the targets that receive a high score

under STORMSeq are bona fide, as microRNA activity generally leads to lower protein

abundance and mRNA transcript abundance [1, 20, 27, 38].

To further assess the use of purely sequence-based methods for this problem, we

also ran the MEME [3] and AlignACE [32] algorithms using default settings on the 250

positive sequences for each training set and examined the resulting PSSMs reported by

both algorithms. Each PSSM M obtained from these methods can then be used to

rank sequences using the ranking function ρseq(sα; M) as described previously. For all

five training/test datasets, we found that neither of the PSSMs discovered by MEME

and AlignACE led to any significant ability to rank let-7b targets (data not shown),

suggesting that without additional information in the form of sequence conservation or

quantitative measurements, de novo approaches to scoring sequences are significantly

more likely to find poor models by virtue of overfitting, using only sequence information

or due to model misspecification.

5.5.8 Discussion

We have presented the STORMSeq method for learning to rank regulatory sequences

by combining heterogeneous datasets and diverse computational prediction methods.

STORMSeq learns a model for ranking sequences given many observations, even if mea-

surements or scores from different observations are not directly comparable. The explicit

formulation of sequence search as a problem of ranking accounts for the fact that different

sequences can have multiple levels of significance and any method for ranking should cor-

rectly order sequences by assigning a high score to biologically significant sequences. In

particular, by accounting for the structure inherent to the problem of ranking, STORM-

Chapter 5. Learning to rank with cumulative distribution networks 151

−25 −20 −15 −10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

PITA score

C
um

ul
at

iv
e

fr
eq

ue
nc

y
Top scoring
Bottom scoring

(a)

50 100 150 200 250 300 350
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Target protein abundance

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Top scoring
Bottom scoring

(b)

Figure 5.20: a) Cumulative frequency plots of the ∆∆G scores on the top and bottom 100

targets as ranked by STORMSeq. High-scoring STORMSeq targets generally have higher target

site accessibility and so have a lower ∆∆G value compared to low-scoring targets (P < 10−20,

Wilcoxon-Mann-Whitney); b) Cumulative frequency plots of protein abundances for top and

bottom 100 targets as ranked by STORMSeq. High-scoring STORMSeq targets have signifi-

cantly lower target protein abundance (P = 7.73 × 10−4) as a result of microRNA repressive

activity.

Seq improves predictive performance over other unstructured methods for learning to

rank. In addition, STORMSeq largely avoids many of the issues of model misspeci-

Chapter 5. Learning to rank with cumulative distribution networks 152

fication and complex inference that may arise when modelling multiple heterogeneous

datasets. As STORMSeq is formulated in fairly general terms, it can also be applied to

other problems of sequence search such as ranking drug targets, discovering genetic as-

sociations or scoring protein-protein interactions, although we have not focused on such

applications here.

We have applied STORMSeq to the problems of scoring sequences bound by tran-

scription factors and sequences bound by microRNAs. In the latter case, the use of CDNs

to model statistical dependence relationships amongst preferences, in tandem with the

ability to combine different data types with computational predictions, were both shown

to improve predictive accuracy. This suggests that STORMSeq may also be useful for

problems in comparative genomics as a principled means for combining diverse datasets.

Other interesting extensions of the STORMSeq would include scaling the proposed frame-

work to genome-wide detection of regulatory sequences as well as using alternate para-

metric forms for the ranking function that could account for interactions between the

sequences to be ranked.

In the case of ranking microRNA-target interactions we have shown that incorpo-

rating diverse computational predictions increases predictive accuracy as measured by

precision and recall. It should be noted that one must exercise care in what additional

sources of computational predictions are incorporated into the analysis. We found that

by incorporating computational prediction methods that had inherently low accuracy

(e.g.: using methods which make predictions in a de novo fashion using sequence data

alone), we could in fact decrease the predictive accuracy of our method (data not shown).

In our case, particular computational prediction methods were included in our analysis

on the basis of a previous study conducted in [27], which gauged the predictive accuracy

of a variety of microRNA-target prediction methods according to a variety of metrics.

We caution that in the case in which data is relatively limited in size, including com-

putational predictions from methods that have low accuracy can adversely impact the

Chapter 5. Learning to rank with cumulative distribution networks 153

accuracy of STORMSeq. A possible extension to the framework proposed here is to allow

for outlier detection so that the model can discount the impact of outlier observations.

An important issue which arises often in practice concerns the tractability of the

proposed framework. In a setting in which one is given a large number of sequences to be

ranked for a single observation, the number of edges in an order graph may in the worst

case reach O(n4), where n is the number of objects in the observation. As storing and

processing such a large observation may be outright intractable, we have made use of the

MAD criterion for asserting preference relationships, which has the effect of reducing the

number of pairwise preferences to be modeled. One can devise similar schemes to reduce

the number of pairwise preferences to be modeled, as many of these will represent pairwise

ordering constraints between very highly relevant sequences and irrelevant ones. We have

also found that one can randomly break up an observation defined over many sequences

into a set of multiple observations defined over smaller subsets of the sequences. Each

of these observations could then be tractably modeled using the proposed method. In

addition or as an alternative to the above, one can choose a CDN graph which is tractable

and amenable to fast computations. An advantage of the proposed framework is that it is

possible to use sparser CDN graphs which tradeoff the presence of dependencies between

pairwise preferences for tractability and speedups in computation time.

Chapter 6

Conclusion

We have proposed the CDN as a graphical model for joint CDFs over many variables.

In Chapter 3, we have shown that the conditional independence properties of a CDN

are distinct from the independence properties of directed, undirected and factor graphs.

However, these properties include those for bidirected graphs as a subset, so that CDNs

provide a parameterization for bidirected graphical models. Furthermore, we presented a

method for constructing a factor graph with additional latent variables for which graph

separation in the corresponding CDN implies conditional independence of the separated

variables in the joint probability obtained from marginalizing out the latent variables. As

a result of this theorem we can always view a CDN as a factor graph with latent variables

introduced. In the particular case in which variable nodes in the CDN correspond to

maxima over latent variables, we provided a closed-form mapping from a CDN to a factor

graph. We have then demonstrated in Chapter 4 that inference in a CDN corresponds

to computing derivatives/finite differences. Chapter 4 described the DSP algorithm for

computing such derivatives/finite differences by passing messages in the CDN where each

message corresponds to local derivatives of the joint CDF.

In Chapter 5, we used the graphical framework provided by CDNs to formulate mod-

els and methods for learning to rank in a structured setting in which we must account for

154

Chapter 6. Conclusion 155

statistical dependence relationships between model variables. We first applied the DSP

algorithm to the problem of ranking in multiplayer gaming where players compete in

teams. The DSP algorithm allowed us to compute distributions over player scores given

previous game outcomes while accounting for the team-based structure of the games,

whereby we were able to show improved results over previous methods. The CDN frame-

work was then used to construct loss functionals for structured ranking learning where

we wish to account for statistical dependence relationships that arise in ranking a set

of objects. We showed that many probability models for rank data can be viewed as

particular CDNs with different connectivities between pairwise object preferences. We

then applied the proposed framework to the problems of document retrieval and sequence

search in computational systems biology. In the latter problem, the proposed framework

allows one to flexibly define structured loss functionals and ranking functions, which then

allows one to integrate together a variety of data sources, including both experimental

measurements and computational predictions.

Based on the work and results presented in this thesis, we can recommend future

directions of research pertaining to the methods presented in previous chapters.

6.1 Future work

6.1.1 Construction of CDN models

In this thesis we have presented a few parameterizations for CDN functions such as

multivariate Gaussian CDFs, copula functions and multivariate sigmoidal functions. Fu-

ture work could focus on investigating the applicability of additional parameterizations

for such functions. Additionally, future work could focus on the implications of the

min-independence property for CDNs defined over discrete variables, whereby the set of

conditional independence relationships is a function of the particular ordering over the

possible variable configurations. One could investigate how this impacts the selection of

Chapter 6. Conclusion 156

CDN functions and how this affects the design of CDNs in general.

6.1.2 Learning in cumulative distribution networks

While in Chapter 5 we presented a framework for learning a CDN in which the likeli-

hood was of the form logF (x|θ), there may be applications in which one may wish to

instead optimize the log-probability density logP (x|θ), such that learning corresponds

to maximum-likelihood learning. In Chapter 4, we presented the DSP algorithm for

both discrete and continuous-variable networks and we showed how DSP could be used

to compute the probability density P (x|θ) from the joint CDF F (x|θ) modeled by the

CDN. In order to perform maximum likelihood learning in which we wish to maximize

the log-likelihood L(x; θ) = logP (x|θ) with respect to a parameter vector θ for a given

set of observed variables x, one can use modified versions of DSP messages in order to

compute the gradient ∇θL(x; θ) of the log-likelihood. The guiding principle here is that

the gradient operator can be distributed amongst local functions in the CDF, much like

the differentiation operation in DSP, so that by modifying DSP messages appropriately

we can obtain the gradient ∇θL(x; θ). Once computed, the gradient vector can then be

used in a gradient-descent algorithm to optimize the log-likelihood. Future research in

this direction could be directed at establishing what class of graphs can yield tractable

gradient computations, as well as the complexity/accuracy tradeoffs involved in comput-

ing gradients in graphs with cycles. Another interesting direction would be to examine

the problem of structure learning of CDNs via maximum-likelihood, which we have not

addressed in this thesis. This could perhaps be accomplished by message-passing for

maximum-likelihood, or perhaps by using other measures of loss for learning CDNs.

6.1.3 Derivative-sum-product in graphs with cycles

We have shown that our message-passing algorithm leads to the correct set of derivatives

of the joint CDF provided that the underlying graph is a tree. As with the sum-product

Chapter 6. Conclusion 157

algorithm for factor graphs, if the graph contains cycles, then the derivative-sum-product

is no longer guaranteed to yield the correct mixed derivatives of the joint CDF, so that

messages may begin to ‘oscillate’ as they propagate around cycles in the graph. One

important direction to pursue is to establish conditions under which the presence of

cycles will not lead to oscillations in messages: one could resort to a similar methodology

as that employed by [68], where a graph with cycles is "unwrapped" and the resulting

messages are analyzed.

6.1.4 Approximating derivative-sum-product

in continuous variable models

In Chapter 4, we showed that for graphs defined over continuous variables, the complexity

of computing DSP message updates at a given function node increased exponentially with

the number of neighboring variable nodes, as one has to sum over products of messages

incoming from all subsets of variables connected to the function node. However, it may

be possible to approximate messages using simpler, tractable forms such as conditional

univariate Gaussian CDFs. Future work here would be to establish tractable methods

for performing such approximations and gauge the performance of such an approximate

scheme for inference in CDNs on both synthetic and real-world data.

6.1.5 Extending the structured ranking learning framework

In Chapter 5 we applied the structured ranking learning framework to problems of learn-

ing to rank in document retrieval and ranking sequences in computational systems biol-

ogy. One could easily explore the use of different CDN topologies, CDN functions and

ranking functions for these same problems and the tradeoff in accuracy versus computa-

tional cost. Other areas in which the problem of learning to rank arises is in collaborative

prediction [57], where any model should account for both the ordinal and discrete non-

metric nature of user ratings. Regarding applications to computational systems biology,

an open question is what other problems would be amenable to the proposed structured

Chapter 6. Conclusion 158

ranking learning framework where one would like to integrate together multiple datasets

and computational predictions in the setting of learning to rank.

6.1.6 Constructing mixed graphical models

As we have demonstrated in this thesis, the graph separation criterion for assessing

conditional independence in CDNs include those for bidirected graphs [58]. As such

graphs are a special case of mixed graphs containing undirected, directed and bidirected

edges, a future avenue of research would be to investigate whether one can tractably

construct such mixed graphical models using a hybrid graphical formulation combining

the CDN model with that of factor graphs for joint probability density/mass functions.

The Bayesian learning approach adopted by [64] could provide a good framework with

which to qualitatively and quantitatively compare the use of CDNs for constructing such

mixed graphical models.

Bibliography

[1] Babak, T., Zhang, W., Morris, Q.D., Blencowe, B.J. and Hughes, T.R. (2004) Probing

microRNAs with microarrays: Tissue specificity and functional inference. RNA, 10,

1813-1819.

[2] Baeza-Yates, R., Ribeiro-Neto, B. (1999) Modern Information Retrieval. Addison

Wesley.

[3] Bailey, T.L., Williams, N., Misleh, C. and Li, W.W. (2006) MEME: discovering and

analyzing DNA and protein sequence motifs. Nucleic Acids Research , 34, W369-W373.

[4] Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep III, P.W. and Bu-

lyk, M.L. (2006) Compact, universal DNA microarrays to comprehensively determine

transcription factor binding specificities. Nature Biotechnology, 24, 1429-1435.

[5] Bishop, C. (2006) Pattern recognition and machine learning. Springer.

[6] Bottou, L. and Le Cun, Y. (2004) Large scale online learning. Advances in Neural

Information Processing Systems, 16, MIT Press, Cambridge, MA.

[7] Burges, C.J.C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N. and

Hullender, G. (2005) Learning to rank using gradient descent. In Proceedings of the

Twenty-Second International Conference on Machine Learning (ICML), 89-96.

[8] Burges, C.J.C., Ragno, R. and Le, Q.V. (2007) Learning to rank with nonsmooth cost

functions. Advances in Neural Information Processing Systems (NIPS), 19, 193-200.

159

BIBLIOGRAPHY 160

[9] Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F. and Li, H. (2007) Learning to rank: from pair-

wise approach to listwise approach. In Proceedings of the Twenty-Fourth International

Conference on Machine Learning (ICML), 129-136.

[10] Casella, G. and Berger, R.L. (2002) Statistical Inference. (2nd Ed.), Duxbury Press.

[11] Chen, X., Hughes, T.R. and Morris, Q.D. (2007) RankMotif++: a motif-search

algorithm that accounts for relative ranks of K-mers in binding transcription factors.

Bioinformatics, 23, i72-i79.

[12] Dawid, A.P. (1979) Conditional independence in statistical theory (with discussion).

Journal of the Royal Statistical Society, Series B, 41, 1-31.

[13] Drton, M. and Richardson, T.S. (2008) Binary models for marginal independence.

Journal of the Royal Statistical Society, Series B, 70, 287-309.

[14] Elo, A.E. (1978) The Rating of Chess Players: Past and Present. Arco Publishing.

[15] Foat, B.C. et al. (2006) Statistical mechanical modeling of genome-wide transcription

factor occupancy data by MatrixREDUCE. Bioinformatics, 22, e141-e149.

[16] Frey, B.J. (2003) Extending factor graphs so as to unify directed and undirected

graphical models. In Proceedings of the Twentieth Conference on Uncertainty in Arti-

ficial Intelligence (UAI), 257-264.

[17] Frey, B.J. and Dueck, D. (2007) Clustering by passing messages between data points.

Science, 315, 972-976.

[18] Frey, B.J., Kschischang, F.R., Loeliger, H-A. and Wiberg, N. (1997) Factor graphs

and algorithms. In Proceedings of the Thirty-Fifth Allerton Conference on Communi-

cations, Control and Computing.

[19] Frey, B.J. and Mackay, D.J.C. (1997) A revolution: Belief propagation in graphs

with cycles. In Advances in Neural Information Processing Systems, 10, MIT Press.

BIBLIOGRAPHY 161

[20] Grimson, A. et al. (2007) MicroRNA targeting specificity in mammals: determinants

beyond seed pairing. Molecular Cell, 27, 91-105.

[21] Gumbel, E. J. and Mustafi, C. K. (1967) Some analytical properties of bivariate

extreme distributions. Journal of the American Statistical Association, 62, 569-588.

[22] Herbrich, R., Graepel, T. and Obermayer, K. (2000) Large margin rank boundaries

for ordinal regression. In Smola, A., Bartlett, P., Scholkopf, B. and Schurmanns, D.,

eds. Advances in Large Margin Classifiers, MIT Press, 115-132.

[23] Herbrich, R., Minka, T.P. and Graepel, T. (2007) TrueSkillTM: A Bayesian skill

rating system. In Advances in Neural Information Processing Systems (NIPS), 19,

569-576.

[24] Hersh, W.R., Buckley, C., Leone, T.J. and Hickam, D.H. (1994) OHSUMED: An

interactive retrieval evaluation and new large test collection for research. In Proceedings

of the 17th Annual ACM SIGIR Conference, 192-201.

[25] Huang, J.C., Morris, Q.D., and Frey, B.J. (2006) Detecting microRNA tar-

gets by linking sequence, microRNA and gene expression data. In Apostolico, A.,

Guerra, C., Istrail, S., Pevzner, P., Waterman, M., eds., Research in Computational

Molecular Biology (RECOMB), Lecture Notes in Computer Science 3909, Springer

Berlin/Heidelberg, 114-129.

[26] Huang, J.C., Morris, Q.D., and Frey, B.J. (2007) Bayesian learning of microRNA

targets from sequence and expression data. Journal of Computational Biology, 14(5),

550-563.

[27] Huang, J.C., Babak, T., Corson, T.W. , Chua, G. Khan, S., Gallie, B.L., Hughes,

T.R., Blencowe, B.J., Frey, B.J., and Morris, Q.D. (2007) Using expression profiling

data to identify human microRNA targets. Nature Methods, 4(12), 1045-1049.

BIBLIOGRAPHY 162

[28] Huang, J.C., Kannan, A. Winn, J. (2007) Bayesian association of haplotypes and

non-genetic factors to regulatory and phenotypic variation in human populations.

Bioinformatics, 23, i212-221.

[29] Huang, J.C., Frey, B.J. and Morris, Q.D. (2008) Comparing sequence and expression

for predicting microRNA targets using GenMiR3. Pacific Symposium for Biocomputing

(PSB), 13, 52-63.

[30] Huang, J.C. and Frey, B.J. (2008) Cumulative distribution networks and the

derivative-sum-product algorithm. In Proceedings of the Twenty-Fourth Conference

on Uncertainty in Artificial Intelligence (UAI), 290-297.

[31] Huang, J.C. and Frey, B.J. (2009) Structured ranking learning using cumulative

distribution networks. Advances in Neural Information Processing Systems (NIPS),

21, 697-704.

[32] Hughes, J.D., Estep III, P.W., Tavazoie, S. and Church, G.M. (2000) Computational

identification of cis-regulatory elements associated with groups of functionally related

genes in Saccharomyces cerevisiae. Journal of Molecular Biology, 296(5), 1205-1214.

[33] Huynh, T., Miranda, K., Tay, Y., Ang, Y.-S., Tam, W.-L., Thomson, A. M., Lim, B.

and Rigoutsos, I. (2006) A pattern-based method for the identification of microRNA-

target sites and their corresponding RNA/RNA complexes. Cell, 126, 1203-1217.

[34] Jarvelin, K. and Kekalainen, J. (2002) Cumulated evaluation of IR Techniques. ACM

Information Systems.

[35] Joachims, T. (2002) Optimizing search engines using clickthrough data. In Pro-

ceedings of the Eighth ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD), 133-142.

BIBLIOGRAPHY 163

[36] Joachims, T. (2005) A support vector method for multivariate performance mea-

sures. In Proceedings of the Twenty-Second International Conference on Machine

Learning (ICML), 377-384.

[37] Kauermann, G. (1996) On a dualization of graphical Gaussian models. Scandinavian

Journal of Statistics, 23, 105-116.

[38] Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and Segal, E. (2007) The role of

site accessibility in microRNA target recognition. Nature Genetics, 39, 1278-1284.

[39] Kislinger, T., Cox, B., Kannan, A. et al. (2006) Global survey of organ and organelle

protein expression in mouse: combined proteomic and transcriptomic profiling. Cell,

125, 173-186.

[40] Krek, A. et al. (2005) Combinatorial microRNA target predictions. Nature Genetics,

37, 495-500.

[41] Kschischang, F.R., Frey, B.J. and Loeliger, H.-A. (2001) Factor graphs and the

sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498-519.

[42] Lauritzen, S. (1996) Graphical models. Oxford Science Publications.

[43] Lehmann, E. L. (1955) Ordered families of distributions. The Annals of Mathematical

Statistics, 26, 399-419.

[44] Liu, T-Y., Xu, J., Qin, T., Xiong, W. and Li, H. (2007) LETOR: Benchmark dataset

for research on learning to rank for information retrieval. LR4IR 2007, in conjunction

with SIGIR 2007.

[45] Liu, X.S., Brutlag D.L. and Liu, J.S. (2002) An algorithm for finding protein-DNA

binding sites with applications to chromatin-immunoprecipitation microarray experi-

ments. Nature Biotechnology, 20, 835-839.

BIBLIOGRAPHY 164

[46] Marden, J. I. (1995) Analyzing and Modeling Rank Data. CRC Press, 1995.

[47] Matúš, F. (1992) Ascending and descending conditional independence relations. In

transactions of the Eleventh Prague conference on information theory, statistical deci-

sion functions and random processes, 189-200, Academia, Prague.

[48] McCullagh, P. (1980) Regression models for ordinal data. Journal of the Royal Sta-

tistical Society, Series B (Methodological), 42(2), 109-142.

[49] Mézard, M., Parisi, G. and Zecchina, R. (2002) Analytic and algorithmic solution

of random satisfiability problems. Science, 297, 812-815.

[50] Minka, T.P. (2001) Expectation propagation for approximate Bayesian inference.

In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence

(UAI), 362-369.

[51] Moussouris, J. (1974) Gibbs and Markov random systems with constraints. Journal

os Statistical Physics, 10, 11-33.

[52] Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and its Ap-

plications, 9(1), 141-142.

[53] Neal, R.M. (1993) Probabilistic inference using Markov chain Monte Carlo methods,

Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

[54] Nelsen, R.B. (1999) An Introduction to Copulas. Springer.

[55] Papoulis, A. and Pillai, S.U. (2001) Probability, random variables and stochastic

processes. McGraw Hill.

[56] Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.

BIBLIOGRAPHY 165

[57] Rennie, J. and Srebro, N. (2005) Fast maximum margin matrix factorization for

collaborative prediction. In Proceedings of Twenty-Second International Conference

on Machine Learning (ICML), 713-719.

[58] Richardson, T.S. and P. Spirtes (2002) Ancestral graph Markov models. Annals of

Statistics, 30, 962-1030.

[59] Richardson, T.S. (2003) Markov properties for acyclic directed mixed graphs. Scan-

dinavian Journal of Statistics, 30, 145-157.

[60] Robertson, S.E. (1997) Overview of the OKAPI projects. Journal of Documentation,

53 (1), 3-7.

[61] Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. and Gaul, U. (2008)

Predicting expression patterns from regulatory sequence in Drosophila segmentation.

Nature, 451, 535-540.

[62] Shaked, M. and Shanthikumar, J.G. (1994). Stochastic orders and their applications.

Academic Press.

[63] Silva, R. and Ghahramani, Z. (2009) Factorial mixture of Gaussians and the marginal

independence model. In Proceedings of the Twelfth Annual Conference on Artificial

Intelligence and Statistics (AISTATS), JMLR: W & CP, 5, 520-527.

[64] Silva, R. and Ghahramani, Z. (2009). The hidden life of latent variables: Bayesian

learning with mixed graph models. Journal of Machine Learning Research.

[65] Tanay, A. (2006) Extensive low-affinity transcriptional interactions in the yeast

genome. Genome Research, 16, 962-972.

[66] Tsochantaridis, I., Hofmann, T., Joachims, T. and Altun, Y. (2004) Support vector

machine learning for interdependent and structured output spaces. In Proceedings of

the Twenty-First International Conference on Machine Learning (ICML), 104-112.

BIBLIOGRAPHY 166

[67] Watson, G.S. (1964) Smooth regression analysis. The Indian Journal of Statistics,

Series A, 26, 359-372.

[68] Weiss, Y. and Freeman, W.T. (2001) Correctness of belief propagation in Gaussian

graphical models of arbitrary topology. Neural Computation, 13, 2173-2200.

[69] Wermuth, N, Cox, D. and Pearl, J. (1994) Explanations for multivariate structures

derived from univariate recursive regressions. Technical Report 94-1, University of

Mainz.

[70] Xia, F., Liu, T.-Y., Wang, J., Zhang,W. and Li, H. (2008) Listwise approach to

learning to rank - theory and algorithm. In Proceedings of the Twenty-Fifth Interna-

tional Conference on Machine Learning (ICML), 1192-1199.

[71] Zhai, C. and Lafferty, J. (2001) A study of smoothing methods for language models

applied to ad-hoc information retrieval. In Proceedings of SIGIR 2001, 334-342.

[72] Zhang, W., Morris, Q.D. et al. (2004) The functional landscape of mouse gene

expression. Journal of Biology, 3, 21-43.

