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1 Introduction

The problem of sequence search, such as discovering transcription factor (TF) bind-
ing sites, microRNA targets and structural genetic variants, remains a significant
challenge in genomics. Severalde novocomputational methods have been devel-
oped with the aim of searching for overrepresented sequences using sequence data
[2, 12]. Due to the degeneracy of such sequences, such methods often require the
use of sequence conservation in order to minimize false positive rates. To address
this, computational methods have recently begun to accountfor additional features
such as the accessibility of target sequences due to RNA secondary structure [15],
contextual features [7] or other types of quantitative profiling data [4, 8, 19, 20]. As
newer methods for discovering sequences and new profiling technologies continue
to emerge, the issue of how to update existing sequence search methods to account
for multiple types of data remains a significant challenge. In addition to accounting
for several types of data, incorporating the large number ofcomputational predic-
tions already available will also be desirable.
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1.1 Previous work

In recent years, many different methods have been proposed to address the prob-
lem of integrating together large heterogeneous datasets in the context of sequence
search. For example, probabilistic generative models havebeen proposed in which
sequence search consists of inference and learning [8, 19] given sequence and ex-
pression data. Although such methods explicitly model the impact of sequences on
gene expression while accounting for uncertainty, a major challenge is to account
for newer datasets as well as new sources of regulatory variability. Each additional
dataset to be analyzed is likely to introduce a significant number of additional pa-
rameters and hidden variables, dramatically increasing the cost and complexity of
inference and learning under the generative framework. Thus, as the number of
types and sizes of data continue to increase, it is likely that both model misspec-
ification and prohibitive computational complexity will hamper the practicality of
probabilistic models with latent variables for discovering sequences. Owing to the
difficulty in developing purely sequence-based models of regulatory sequences, a
major challenge is then to incorporate additional data types under a unified tractable
and principled framework.

1.2 Sequence search as a problem of learning to rank

A strategic approach to the above problem can be obtained by noting that the prob-
lem of sequence search is inherently a problem of learning torank, whereby we are
given a large number of possible sequences and only some relatively small number
are of biological significance. Furthermore, there is oftena well-defined notion of
preference between sequences. An example of this arises when searching for tran-
scription factor sites, whereby some sites are more strongly bound than others by
certain transcription factors. Thus when discovering sequences, it is desirable to
explicitly model the fact that sequences do not fall into twodistinct categories of
positives and negatives but instead have different degreesof significance attached
to them, so that a plausible model should assign a higher score for sequences with
higher importance.

Some methods have in fact formulated the problem of sequencesearch as one of
ranking, so that they assign a score to each sequence with theimplicit assumption
that high-scoring sequences are more likely to bebona fidethan low-scoring ones.
The idea of discovering sequences using an explicit rankingformulation has been
explored previously by [3, 4, 20] in the context of using the orderings obtained
from microarray intensities to learn position-specific scoring matrices (PSSMs) for
transcription factor binding sites (TFBS). This was shown to significantly improve
predictive accuracy with respect to other model-based methods, as no assumptions
on the functional relationship between measured intensities and sequences needed
to be made in order to learn to rank sequences. The improved accuracy of such
ranking-based methods with respect to model-based methodsthen suggests that a
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good method for discovering sequences would be one specifically tailored to the
problem of learning to rank.

Given the above methods for ranking sequences, our goal hereis to expand on
previous work along three directions. First, we address thepresence of statistical de-
pendence relationships between variables in the problem ofranking, since the rank
of one sequence can only be determined given the ranks of all sequences. Second,
the scoring function used by the previous methods of [3, 4, 20] was parameter-
ized by a PSSM and so only accounted for sequence inputs. Herewe will allow for
ranking functions which can account for rich feature spacesobtained from quan-
titative measurements such as expression profiling data. Lastly, by formulating the
sequence search problem as one of ranking, we can leverage information across
several experimental datasets and diverse prediction methods via the orderings over
sequences that each provides. Under the framework of learning to rank, orderings
provided by diverse computational methods and those provided by experimental
data are all comparable and readily accounted for, even if measured/predicted val-
ues between different prediction methods may be difficult tocompare. Thus, given
that we observe many different partial orderings provided by diverse datasets and
prediction methods, our aim will be to predict orderings over sequences so that se-
quences which are often highly ranked across different experiments and prediction
methods should also be highly ranked by our method. The proposed framework of
ranking then offers three significant advantages over previous approaches for se-
quence search. First, the framework makes minimal assumptions about the relation-
ships between sequences and measured/predicted labels forthe sequences and so
largely avoids the issue of model misspecification. Second,it allows us to leverage
orderings provided by heterogeneous datasets and prediction methods which may
have little overlap with one another in the sequences they contain, but are neverthe-
less informative when combined together under a single model. Lastly, predictive
accuracy is improved by explicitly modelling the dependencies involved in learning
to rank.

To model the statistical dependencies in learning to rank, we can take advantage
of the structured ranking learning framework which was recently proposed in [10].
This probabilistic framework for learning to rank is based on a novel class of proba-
bilistic graphical models called cumulative distributionnetworks [9, 11], or CDNs.
In learning to rank in a structured setting where we account for dependence relation-
ships between model variables, orstructured ranking learning, the goal is to learn
a ranking function under a structured loss functional whichaccounts for the statis-
tical dependence relationships involved in predicting pairwise preferences between
sequences, as misranking one sequence affects how we rank other sequences. In the
context of discovering sequences, we can then interpret a set of prediction meth-
ods and a set of experimental measurements as observations which convey partial
orderings over some subset of the sequences of interest. Thus we present STORM-
Seq, a method formulated which scores sequences given a set of features and a set
of orderings over subsets of the sequences to be ranked. Our method generalizes
the RankMotif++ method of [4] to a structured learning setting where we can A)
account for the dependencies in the problem of ranking, B) incorporate rich feature
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Fig. 1 The STructured ranking of Regulatory Motifs and Sequences (STORMSeq) method. Given
multiple independent observations conveying various orderings over sequences and given the ob-
served sequences and input features extracted for each observation (e.g.: mRNA, microRNA and
protein measurements, sequence context features), STORMSeq learns a ranking function such that
the probability of generating the observed orderings is maximized.

spaces such as quantitative measurements of mRNA and protein expression in addi-
tion to sequence data, and C) account for diverse computational prediction methods
as additional data. The outline of the method is illustratedin Figure 1. We will apply
the proposed framework to the problems of scoring transcription factor binding sites
and microRNA targets, although the framework is general enough to be applied to
a wide variety of bioinformatics problems, such as ranking therapeutic drug targets,
finding genetic associations or scoring protein-protein interactions.

2 STORMSeq: STructured ranking of Regulatory Motifs and
Sequences

We will begin by describing the problem of structured ranking learning for discov-
ering sequences using the framework of [10]. Suppose we wishto score sequences
in the setS . Let sα be a particular sequence inS which is indexed byα. Here,
a sequence is any segment of nucleotides or amino acids for which one can extract
features. For example, in the case where we wish to discover microRNA targets, a
‘sequence’ may correspond to the entire 3’ untranslated region (3’UTR) for a par-
ticular gene, so that one has access to the sequence of the 3’UTR, as well as other
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features for the 3’UTR sequence. These can include its levelof expression across
many tissues/cell types, the abundance of proteins which are translated from the se-
quence preceding the 3’UTR and the expression of a microRNA which putatively
targets a site in the 3’UTR sequence. This is illustrated in Figure 2(a): for each node
α, we are provided with a corresponding sequencesα and a set of featuresxα which
will aid in learning to rank the sequences.

Suppose now that we are given a set ofN observationsD = {D1, ⋅ ⋅ ⋅ ,DN}, where
each observationDn provides an ordering of the sequences in some subsetSn⊆S .
Here, an observation contains a partial ordering of the sequences to be ranked. For
example, in the context of scoring microRNA targets, orderings might be provided
by gene expression values in microRNA overexpression experiments [8] or they can
be provided by scores output by computational prediction methods [7, 13, 17]. The
orderings over sequences in an observation can then be viewed as a set of pairwise
preference relationships between sequences, which we willdenote usingα ≻ β . For
a given observation, we can then represent the ordering between sequences as a di-
rected graph in which a directed edgee=(α→ β ) is drawn between two nodesα,β
if sequencesα waspreferredto sequencesβ within observationDn. We will denote
this directed graph as the order graphGn = (Vn,En) for observationDn, whereEn is
the set of all edges in the order graph and each nodeα ∈Vn corresponds to a unique
sequencesα ∈Sn. An example of such an order graph is shown in Figure 2(b). Thus
the nth observation consists of the setDn = {Gn,{sα ,xα}α∈Vn}, so that our data
consists of a collection of independent observationsD = {D1, ⋅ ⋅ ⋅ ,DN}. One im-
mediate advantage of the proposed framework is that orderings over sequences can
be compared between observations despite the fact that measured/predicted values
between observations may not be comparable. Furthermore, the orderings conveyed
by different observations can be partial and can be defined over different subsets of
sequences.

To combine the different orderings together, we now define aranking function
ρ(α) : Vn → R which assigns real-valued scores to sequences. If we model the
stochastic scoreσα of a given nodeα as

σα = ρ(α)+πα , (1)

whereπα is a random variable specific to nodeα, then we can define the preference
eventα ≻ β as being equivalent to the following:

α ≻ β ⇔ παβ ≡ πβ −πα ≤ ρ(α)−ρ(β ). (2)

Here,παβ is apreference variablebetweenα,β . Thus for each edge(α,β ) in the or-
der graphGn, we assign a corresponding continuous-valued preference variableπαβ
which should satisfy the above inequality in order for the preference relationα ≻ β
to be observed. Now we can define the quantityr(e;ρ ,Dn) = ρ(α)−ρ(β ) and col-
lect these into a vectorr ≡ r(Dn;ρ) ∈ R∣En∣ of pairwise differences, where∣En∣ is
the number of edges in the order graph. Similarly, letπe≡ παβ be the preference
variable defined along edgee in the order graphGn. Having defined the preference
variables, we must now select an appropriate loss measure for learning the ranking
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(a)

(b) (c)

Fig. 2 The STructured ranking of Regulatory Motifs and Sequences (STORMSeq) method. a) Fea-
ture extraction. For each sequencesα to be ranked, we assign a corresponding nodeα and a set
of corresponding features which are relevant to ranking thesequence. For the example shown, the
sequencesα may correspond to the sequence for the entire 3’ untranslated region (3’UTR) of a
gene, so that the feature vectorxα include the expression of the gene carrying the sequence, the
abundance of protein produced from the coding region for thegene carrying the sequence and the
expression of a putative microRNA which targets the sequence; b) An observation consisting of an
order graph over three nodes where each nodeα ,β ,γ in the order graph corresponds to a unique se-
quencesα ,sβ ,sγ to be ranked, and each directed edge expresses a preference relationship between
two nodes. An order graph can be readily established from logp-value scores, expression ratios
or other available statistics which provide an indication of the relevance or importance of a given
sequence. In this example the order graph corresponds to theorderingα ≻ β ≻ γ . Each edge in the
order graph then corresponds to preference variablesπαβ ,πβγ ,παγ ; c) The corresponding cumula-
tive distribution network (CDN) defined over the preferencevariables specified by the observation
of b). The CDN models the joint CDF over the preference variables and allows us to compactly
specify dependencies between preferences so we can performstructured ranking learning [10]

function. For a given observationDn, we will choose the loss measure to be the neg-
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ative log-probability of observing the preference relationships between sequences in
order graphGn. From Equation (2), this will take the form of a probability measure
over events of the typeπe≤ r(e;ρ ,Dn) so that we obtain

ℙ[En∣Vn,ρ ] = ℙ

[

∩

e∈En

[πe≤ r(e;ρ ,Dn)]

]

= Fπ
(

r(Dn;ρ)
)

, (3)

whereFπ is the joint CDF over the preference variablesπe. Thus, for a given ob-
servationDn, any probability over the set of preference eventsπαβ ≤ r(e;ρ ,Dn)

will take on the form of a joint CDFFπ
(

r
)

over the preference variablesπ ≡
{παβ}(α ,β )∈En, where the CDFFπ is evaluated atr(Dn;ρ).

Given multiple independent observationsD = {D1, ⋅ ⋅ ⋅ ,DN}, we can then define
a structured loss functionalL (D ;ρ ,Fπ) as the log-probability of independently
generating the observed orderings inD , so that

L (D ;ρ ,Fπ)≡−
N

∑
n=1

logFπ
(

r
)

(4)

where each term in the loss functional is the log of a joint CDF. Whilst each of these
log-CDF terms is defined over many preference variables witha high degree of de-
pendence amongst variables, we can nevertheless representeach term compactly as
a cumulative distribution network (CDN) [9, 11], which is a graphical model repre-
senting the joint CDF of several random variables (see Appendix). An example of a
possible CDN representing a joint CDF over three pairwise preferences is shown in
Figure 2(c).

Having defined the structured loss functionalL (D ;ρ ,Fπ), the problem of learn-
ing to rank sequences from observationsD1, ⋅ ⋅ ⋅ ,DN will then consist of minimizing
the loss functional with respect to the ranking functionρ and the CDFFπ . Let θ de-
note the vector of parameters which parameterize both the ranking functionρ and
the joint CDFFπ , so that we can write the structured loss as a function ofθ , or

L (D ;θ )≡L (D ;ρ ,Fπ) =
N

∑
n=1

L (Dn;θ ) =−
N

∑
n=1

logFπ
(

r(Dn;θ )
)

. (5)

In order to optimizeL (D ;θ ) with respect toθ , we will assume that we can com-
pute the gradient∇θ L (Dn;θ ) for each observationDn. Given the gradient, we can
then proceed to optimize the structured loss functional using a stochastic gradients
descent (SGD) algorithm whereby for each observationDn, we construct a CDN for
order graphGn and we update the parameters of the model according to the rule
θ ← θ − µ∇θ L (Dn;θ ), whereµ is a learning rate parameter for the SGD algo-
rithm. This leads to an efficient method for learning to rank,as we only need to
store the CDN for a single observation for the purpose of computing a gradient and
updating the model parameters: this is illustrated graphically in Figure 3.
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Fig. 3 Illustration of the STORMSeq framework. For each observation Dn, we construct a
CDN defined over preference variables corresponding to edges in the order graphGn (top).
For this example, we have an order graph defined over four nodes and six preference vari-
ables. The CDN then models the joint CDF over the six preference variables as a product

of functions: here the model consists of a product of three functions so thatFπ

(

r(Dn;θ )
)

=

φα(rα,δ , rα,β , rα,γ )φβ (rα,β , rβ ,γ , rβ ,δ )φγ (rα,γ , rβ ,γ , rγ,δ ). Once the CDN has been constructed, we
can perform stochastic learning of parameters by computingthe gradient of the log-CDF modeled
by the CDN and then updating the vector of parametersθ (bottom). We can then repeat this process
for each observation and for a numberT of epochs, or passes through the training set.

2.1 Ranking using sequence and quantitative features

In order to adapt the above framework to the problem of ranking sequences, we will
use a ranking functionρ(α) which has the general form

ρ(α) = ρseq(sα ;M)+ρquant(xα ;w) (6)

whereρseq,ρquant are functions which assign scores to the sequencesα and its cor-
responding feature vectorxα . Here, it is possible to specify different parametric
forms for ρ(α) which assign scores to sequences under various assumptions. In
order to score any given nodeα based on sequencesα alone, we will consider
the sum of contributions of subsequences ofsα under the assumption that each
subsequence contributes independently to the overall score for sα (see Appendix).
We will chooseρquant to be a linear function of the quantitative features, so that
ρquant(xα ;w) = wTxα . Given these parameterizations, a sequencesα will have a
higher score if bothρseqandρquant assign high scores tosα .
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The proposed framework of learning the ranking function from observations
is then summarized as follows: given a training set of observations consisting
of sequences to be ranked, associated quantitative features and a partial order-
ing over the sequences, we wish to learn a ranking functionρ(α) which max-
imizes the probability of generating the observed orderings by assigning higher
scores to those sequences which are most consistently highly ranked in the ob-
servations{D1, ⋅ ⋅ ⋅ ,Dn}. In order to learnρ(α), we can compute the gradients
∇Mρseq(sα ;M),∇wρquant(xα ;w) (see Appendix) in order to perform gradient-based
learning. The ranking function is such that we can account for sequence data in ad-
dition to other quantitative features such as expression measurements. The use of
CDNs to represent the structured loss functional for learning to rank then allows
us to account for the fact that learning to rank is inherentlya problem in which one
must account for the presence of statistical dependence relationships between model
variables.

We emphasize at this juncture that STORMSeq has been formulated in a general
way so that it is applicable to many different problems in which we wish to learn
a ranking function using multiple instances of orderings, sequence data and other
quantitative features. To illustrate how STORMSeq might beused in practice, we
will apply it to two problems of sequence search. In the first of these problems, we
will score sequences bound by transcription factors using the protein binding mi-
croarray data of [3]. In the second, we will score targets of the let-7b microRNA
in human retinoblastomas using both microRNA overexpression data [8] and other
quantitative features such as protein abundance and mRNA expression levels of tar-
gets. Before we proceed, it will be instructive to study the relation between STORM-
Seq and a previous method for learning to rank sequences fromorderings over se-
quences obtained from microarray measurements.

2.2 The RankMotif++ model as a cumulative distribution network

It is worth noting that in the RankMotif++ model of [4], the objective being mini-
mized corresponds to the log-CDF over preferences under theassumption that pref-
erence variables are mutually independent. More precisely, in RankMotif++ the
loss function is given byL (θ ) = logFπ(r(Dn)), where the probability over all
pairwise preferencesα ≻ β is represented by a product over logistic functions of
rαβ = ρ(α)−ρ(β ) so that

Fπ(r(Dn))≡ℙ
[

π ≤ r(Dn)
]

=∏
s

1
1+exp(−νrs)

= ∏
α≻β

1

1+exp
(

−ν
(

ρ(α)−ρ(β )
))

(7)
with ρ(α) = ρseq(sα ) andν > 0. Thus the above loss function can be represented
using a disconnected CDN model where each function node corresponds to the CDN
functionφs(rs) =

(

1+exp(−νrs)
)−1

and all pairwise object preferences are mod-
eled as being independent of one another.
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3 Results

3.1 Discovering transcription factor binding profiles

We will first apply the proposed structured ranking learningframework to the prob-
lem of ranking sequences using measurements from a protein binding microarray
(PBM) experiment. We obtained PBM data from the Supplementary Material sec-
tion of [3], which consisted of measured intensities of 35-mer probes bound by five
different transcription factors Cbf1, Ceh-22, Oct-1, Rap1, Zif268 across two exper-
imental replicate arraysArray 1 andArray 2. The PBM data consisted of intensity
measurementsyα for a set of sequences{sα ∈S }, where each probe on the array is
indexed byα andsα denotes the nucleotide sequence of a given probe on the array.
We used the array labeledArray 1as our training data and the probe measurements
from Array 2 as test data. The goal here is to then learn a ranking functionwhich
assigns scores to probe sequences under the assumption thathigher scores should
indicate an increased probability of a TF binding to a sequence.

We applied the STORMSeq method and evaluated the resulting ranking function
on the test set. In order to compare STORMSeq to similar methods, we also ran the
MatrixREDUCE [6], MDScan [18], Prego [20] and RankMotif++ methods on the
same training data and evaluated these on the same test data using the settings spec-
ified by [4] (see Appendix for details). Here we applied STORMSeq without using
additional quantitative features to provide a fair comparison to the other methods
which rank sequences using only sequence data. The performance of all five meth-
ods for the above five TFs are summarized in Figures 4(a) and 4(b) using preci-
sion versus recall curves, as well as Normalized DiscountedCumulative Gain [14]
curves which account for how well a method ranks high-intensity sequences (see
Appendix). The use of the NDCG metric here is well-suited to the problem at hand,
as the truncation leveln can be interpreted as the number of sequences to be further
validated or analyzed, so that a higher NDCG value is obtained if the most signif-
icant sequences appear at the top of the list in their correctorder of significance.
Here, the significance of a sequence is determined by the strength with which a
transcription factor binds to it, so that the highest score should be assigned to the
most strongly bound sequence. Figures 4(a) and 4(b) demonstrate that by ranking
in a structured learning setting and by making no particularassumption about the
relationship between sequence s and measured PBM intensities, we increase pre-
dictive accuracy as measured by precision, recall and NDCG compared to the other
unstructured prediction methods such as RankMotif++. In particular, according to
the NDCG metric, our method of ranking also has increased accuracy in terms of the
ranking itself, so that sequences with higher intensities are more likely to be ranked
higher by STORMSeq than by the other models.

The corresponding PSSMs found by each of the above methods are shown in
Figure 5. As can be seen, the PSSMs learned by STORMSeq are consistent with
those found by the other methods as well as with PSSMs previously reported for
this dataset [3, 4]. It is worth noting here that the consensus sequence for RAP1
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(a)

(b)

Fig. 4 a) Precision versus recall using five different methods for the Cbf1, Ceh-22, Oct-1, Rap1,
Zif268 transcription factors studied in [3, 4]. The methodsshown are MatrixREDUCE (red), MD-
Scan (cyan), Prego (green), RankMotif++ (black) and STORMSeq (blue); b) The corresponding
curves showing Normalized Discounted Cumulative Gains (NDCG) versus the truncation level, or
the number of top-ranking sequences. Both a) and b) show thatby ranking in a structured learning
setting using STORMSeq, we generally improve predictive accuracy, in terms of precision, recall
and NDCG, with respect to the other unstructured learning methods shown here.

found by our method, as well as the consensus reported by the Prego and MDScan
methods agree with the 1st 6 base positions of the widely published motifACACCC
[21]. Also, observe that while the PSSMs obtained by STORMSeq can be degen-
erate at many positions for various TFs, the improved performance of STORMSeq
over these methods suggests that these methods are likely tounderestimate the de-
generacy of the motifs to be discovered as a consequence of model misspecification.

One reviewer has pointed out that the particular sequence ranking function used
above is not designed to allow for gaps in motifs [5]. One advantage of the struc-
tured ranking learning framework is that the user can choosefrom many ranking
functions for any given problem, so that the user can specifya ranking function
which accounts for the presence of gaps, or other specific features of the motifs
to be found. In the case where we wish to learn a PSSM for gappedmotifs, we
can constrain the degenerate positions in the PSSM by constraining the entropy of
the nucleotide frequency at these positions: we provide an example of this in the
Appendix.

Having applied the structured ranking learning framework to the problem of dis-
covering transcription factor binding sites, we will also demonstrate the usefulness
of STORMSeq for discovering microRNA targets, which also consist of short nu-
cleotide sequences which regulate the activity of genes.
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Fig. 5 Motifs found by the MatrixREDUCE, MDScan, Prego, RankMotif++ and STORMSeq
methods (rows) for each of the TFs.

3.2 Discovering microRNA targets

In addition to learning to rank transcription factor binding sites, we will also demon-
strate the usefulness of STORMSeq for ranking microRNA targets. MicroRNAs
consist of molecules of 22-25 nucleotides which target mRNAtranscripts through
complementary base-pairing to short target sites, in a fashion analogous to the op-
eration of transcription factors. However, unlike transcription factors, microRNAs
are generally inhibitory in their activity, so that microRNA activity generally re-
presses the activity of their target genes either by reducing the abundance of their
target mRNA transcripts or by repressing translational activity of their target mR-
NAs [1, 8]. There is substantial evidence that microRNAs arean important com-
ponent of the cellular regulatory network, providing a post-transcriptional means to
control the amounts of mRNA transcripts and their protein products [1, 7, 8, 15]. As
a consequence of their important role in gene regulation, many previous methods
have been proposed for performing genome-wide discovery oftargets of microR-
NAs [7, 8, 13, 17].

We will focus here on the let-7b microRNA and a dataset profiling the expression
of human mRNAs in WERI-Rb1 retinoblastoma samples after thetransfection of a
synthetic RNA duplex of the mature let-7b hairpin [8]. Underthe assumption that
microRNA regulation is causes reduced mRNA expression, pairwise preference re-
lationships between sequences were asserted using the samecriteria as in [4], but us-
ing negative log-expression-ratios of expression from thelet-7b transfections. Thus,
the score of a sequence should correspond to the amount of down-regulation by let-
7b. We constructed our dataset in a fashion similar to that used in the previous exam-
ple for transcription factor binding sites (see Appendix).In contrast to the previous
problem which had relatively few sources of data variability, here we are provided
with in vivo expression measurements of genes which may have several different
regulators, some of which may themselves be regulated by let-7b. The problem of
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scoring microRNA targets is therefore representative of the type of problem more
commonly encountered in genomics, where the goal is to discover sequences in the
presence of many sources ofin vivo regulatory variability. The hypothesis here is
that we can leverage additional information in the form of independent quantita-
tive measurements and computational predictions in order to better account for the
variability in orderings over sequences.

To learn to rank microRNA targets, we used human 3’UTR sequence data, mouse
mRNA expression, mouse let-7b expression and mouse proteinabundance data
[1, 22, 16] across brain, heart, liver, lung and placenta tissue pools, whereby the
mouse mRNAs were selected as homologs of the human mRNAs in the above
WERI-Rb1 assay. Furthermore, the expression for the let-7bmicroRNA in the above
tissue pools corresponds to that of mouse homolog for let-7b(see Appendix). Here
we selected sequences which have associated mouse mRNA and protein measure-
ments.

In addition to expression features, we would also like to account for other contex-
tual sequence features, such as microRNA site accessibility. To this end, we ran the
PITA [15] algorithm for computing an accessibility score for each 3’UTR sequence
given the mature let-7b sequence. This score, which we will here denote as∆∆G, is
a function of the accessibility of a target site given the most likely secondary struc-
ture of the target mRNA. Combined with the above mRNA, microRNA and protein
abundance features, this yielded a total of 16 quantitativefeatures for each sequence
to be scored. Thus for this problem, each 3’UTR sequence corresponds to a putative
let-7b-target interaction so that let-7b putatively targets at least one target site in the
3’UTR sequence. The above 16 features thus form the feature vectorxα which we
will use for learning to rank microRNA targets.

3.2.1 Incorporating diverse computational predictions

In addition to the above features, we would like to also incorporate computational
target predictions for let-7b from the PicTar [17], TargetScan [7] and RNA22 [13]
sequence-based target prediction methods. In order to assign scores to candidate
microRNA targets, each of these methods makes use of variouscriteria such as con-
servation and contextual sequence features. The scores output by these prediction
methods can be then used to generate an order graph over sequences, so that each
method provides a partial ordering over some subset of microRNA-target interac-
tions (see Appendix).

Given all of the above, we applied STORMSeq under three settings, where 1) we
only used sequence data for learning to rank targets, B) we only used quantitative
features (mRNA and microRNA expression, protein abundanceand∆∆G), and C)
we also used information provided by diverse computationalprediction methods in
addition to both sequence and quantitative features (see Appendix). To assess the
out-of-sample predictive performance of our method, we selected a random sample
of 250 positive sequences for our training data and the remainder for the test data.
Similarly, we selected 250 sequences from the negative group for our training set
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Fig. 6 Precision versus recall for different STORMSeq learning configurations using expression
data for mRNAs in response to let-7b transfection [8]. By incorporating additional sources of
sequence information, sequence context and quantitative profiling features, STORMSeq achieves
higher accuracy (blue) than using 7-mer counts to predict downregulation (black), using sequence
data alone (green) or sequence data combined with quantitative features without computational
predictions as additional data (red).

and the rest for the test data. We thus formed five independenttraining/test splits in
this fashion (see Appendix). For each of the five train/test datasets, we computed
precision and recall for each of these experimental settings. The resulting precision
and recall curves, averaged over the five test sets, are shownin Figure 6. As can
be seen, incorporating sequence data, quantitative features and computational pre-
dictions together under one model yields an improvement in predictive accuracy
compared to using sequence alone or sequence in tandem with quantitative features.
This indicates that by leveraging multiple sources of information about microRNA
regulation, we can significantly increase the accuracy withwhich we discover mi-
croRNA targets.

For further validation, we show the cumulative distribution of ∆∆G scores for
the top and bottom 100 targets ranked according to STORMSeq (Figure 7(a)). We
expecta priori that sequences with lower∆∆G score are more likely to be bound by
a targeting microRNA than not. As can be seen, high-scoring targets have a signif-
icantly lower average∆∆G value than low-scoring targets (P< 10−20, Wilcoxon-
Mann-Whitney test), demonstrating that the targets discovered by STORMSeq are
likely to be genuinely targeted by let-7b. Furthermore, theprotein abundances
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Fig. 7 a) Cumulative frequency plots of the∆∆G scores on the top and bottom 100 targets as
ranked by STORMSeq. High-scoring STORMSeq targets generally have higher target site acces-
sibility and so have a lower∆∆G value compared to low-scoring targets (P < 10−20, Wilcoxon-
Mann-Whitney); b) Cumulative frequency plots of protein abundances for top and bottom 100
targets as ranked by STORMSeq. High-scoring STORMSeq targets have significantly lower target
protein abundance (P= 7.73×10−4) as a result of microRNA repressive activity.

for the top and bottom 100 targets differed significantly as well (Figure 7(b),
P= 7.73×10−4), adding support for the hypothesis that the targets which receive
a high score under STORMSeq arebona fide, as microRNA activity generally leads
to lower protein abundance and mRNA transcript abundance [1, 7, 8, 15].

To assess the use of purely sequence-based methods for this problem, we also
ran the MEME [2] and AlignACE [12] algorithms using default settings on the
250 positive sequences for each training set and examined the resulting PSSMs
reported by both algorithms. The PSSMs obtained from these methods can then be
used to rank sequences. We found that for all five training/test datasets, none of the
PSSMs discovered by MEME and AlignACE led to any significant ability to rank
let-7b targets (data not shown), suggesting that without additional information in the
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form of sequence conservation or quantitative measurements, de novoapproaches
to scoring sequences are significantly more likely to find poor models by virtue of
either using only sequence information or by virtue of modelmisspecification.

4 Discussion

We have presented the STORMSeq method for learning to rank regulatory se-
quences by combining heterogeneous datasets and diverse computational predic-
tion methods. The explicit formulation of sequence search as a problem of ranking
accounts for the fact that different sequences can have multiple levels of signifi-
cance and any method for ranking should correctly order sequences by assigning
a high score to biologically significant sequences. In particular, by accounting for
the statistical dependence relationships which exist in learning to rank, STORMSeq
improves predictive performance over other unstructured methods for learning to
rank. In addition, STORMSeq largely avoids many of the issues of model misspeci-
fication and complex inference which may arise when modelling multiple heteroge-
neous datasets. As STORMSeq is formulated in fairly generalterms, it can also be
applied to other problems of sequence search such as rankingdrug targets, discov-
ering genetic associations or scoring protein-protein interactions, although we have
not focused on such applications here.

In the case of ranking microRNA-target interactions we haveshown that incorpo-
rating diverse computational predictions increases predictive accuracy as measured
by precision and recall. It should be noted that one must exercise care in what ad-
ditional sources of computational predictions are incorporated into the analysis. We
found that by incorporating computational prediction methods which had inherently
low accuracy, we could in fact decrease the predictive accuracy of our method (data
not shown). In our case, particular computational prediction methods were included
in our analysis on the basis of a previous study conducted in [8] which gauged the
predictive accuracy of a variety of microRNA-target prediction methods according
to a variety of metrics. We caution that in the case in which data is relatively limited
in size, including computational predictions from methodswhich have low accu-
racy can adversely impact the accuracy of STORMSeq. A possible extension to the
framework proposed here is to allow for outlier detection sothat the model can
discount the impact of outlier observations.

One reviewer pointed out that the optimization problem being solved is gen-
erally non-convex and may assign high probability to different orderings over se-
quences. Although the underlying ranking may not be unique for a given class of
ranking functions and/or loss functionals, there may be a large number of —it par-
tial orderings over sequences which are consistent with an underlying (and possibly
unidentifiable) total ordering over sequences. Thus, although many orderings may
be possible and STORMSeq may learn one of these, those which are most useful in
practice are those orderings in which therelevantsequences are correctly ranked,
while less of a penalty should be assigned whether we have correctly ranked the less
relevant sequences. Thus the issue of whether the ranking ofrelevant sequences is
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identifiable may be of concern, so that standard techniques for avoiding poor local
minima must be used and the solutions obtained from multiplerestarts should be
compared with one another.

An important issue which arises often in practice concerns the tractability of the
proposed framework. In a setting in which one is given a largenumber of sequences
to be ranked for a single observation, the number of edges in an order graph may in
the worst case reachO(n4), wheren is the number of objects in the observation. As
storing and processing such a large observation may be intractable, we have made
use of the mean absolute deviation (MAD) criterion for asserting preference rela-
tionships (see Appendix), which has the effect of reducing the number of pairwise
preferences to be modeled. One can devise similar schemes toreduce the number
of pairwise preferences to be modeled, as many of these will represent pairwise or-
dering constraints between very highly relevant sequencesand irrelevant ones. We
have also found that one can randomly break up an observationdefined over many
sequences into a set of multiple observations defined over smaller subsets of the
sequences. Each of these observations could then be tractably modeled using the
proposed method. In addition or as an alternative to the above, one can choose a
CDN graph which is tractable and amenable to fast computations. An advantage
of the proposed framework is that it is possible to use sparser CDN graphs which
tradeoff the presence of dependencies between pairwise preferences for tractability
and speedups in computation time.

We have applied STORMSeq to the problems of scoring sequences bound by
transcription factors and scoring microRNA targets, whereby performing structured
learning and combining different data types with computational predictions was
shown to improve predictive accuracy. In the case of rankingmicroRNA targets,
features relating to expression patterns in mouse proved toincrease the ranking ac-
curacy of scoring targets in human retinoblastomas. This suggests that STORMSeq
may also be useful for problems in comparative genomics as a principled means
for combining diverse datasets from different species. Other interesting extensions
of the STORMSeq would include scaling the proposed framework to genome-wide
detection of regulatory sequences as well as using richer representations for the
ranking function which could account for direct interactions between the sequences
to be ranked.
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Appendix

Cumulative distribution networks

The CDN [9, 11] is an undirected bipartite graphical model inwhich the joint CDF
F(z) over a set of random variables is modeled as a product over functions defined
over subsets of these variables. More formally, for variable setZ, the joint CDF is
given by

F(z) = ∏
s∈S

φs(zs), (8)

whereS is a set of function indices and fors∈ S, φs(zs) is defined over some subset
of the variables inZ. For detailed derivations of the properties of CDNs, including
marginal and conditional independence properties, we refer the reader to [9]. The
CDN framework provides us with a means to compactly represent multivariate joint
CDFs over many variables: in the next section we will formulate a loss functional
for learning to rank which takes on such a form.

A structured loss functional for learning to rank

Let the ranking functionρ(α)≡ ρ(α;a) be parameterized by the parameter vectora
so thatr(Dn;ρ)≡ r(Dn;a). For a given order graphGn, the structured loss functional
is then given by

L (Dn;θ )≡L (Dn;a,ν) =− logFπ
(

r(Gn;a)
)

=− logφ(r(Dn;a)) (9)

whereθ =
[

a ν
]

is the set of parameters. Here we can choose from a wide variety of
CDN topologies and functional forms for the CDN functions, such as the particular
CDN used in [10]. We will represent the joint CDF using a single CDN function
φ(r) set to a multivariate sigmoidal function so that

φ(r) =
1

1+∑eexp(−νr(e;a,Dn))
, ν > 0. (10)

For the given CDN and ranking functions, the learning problem for the current ob-
servationDn then becomes
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min
a,ν ∑

n
log

(

1+ ∑
e∈En

exp
(

−νr(e;a,Dn)
)

)

s.t. ν > 0. (11)

In order to solve the above optimization problem, we will usea stochastic gra-
dient descent algorithm which will require us to compute thegradient∇aL (Dn;θ )
for each observationDn. This is given by

∇aL (Dn;θ ) = νφ
(

r(Dn;a)
)

∑
e∈En

exp(−νr(e;a,Dn))∇ar(e;a,Dn),

with

∇ar(e;a,Dn) = ∇aρ(α;a)−∇aρ(β ;a)

(12)

The derivative with respect to the CDN function weightw is then given by

∂ν

[

L (Dn;θ )
]

=− ∑
e∈En

r(e;a,Dn)exp
(

−νr(e;a,Dn)
)

φ(r) (13)

With the above gradients, we can then proceed to construct a CDN for each ob-
servationDn and updating the parameters of the model according to the rule
θ ← θ − µ∇θL (Dn;θ ), whereµ is a learning rate parameter.

Ranking functions for sequence and quantitative features

Suppose we are given a sequencesα of lengthLα which we would like to score. Let
sk:k+K−1

α be a subsequence ofsα of lengthK starting at positionk and letsj
α be the

symbol observed at positionj in sequencesα . Given a PSSMM of lengthK (where
Mk,b is equal to the probability of emitting symbolb at positionk of the PSSM) we
can define the score for sequencesα as the probability that a transcription factor
binds to at least one subsequence of lengthK in sα according to the PSSM, so that

ρseq(sα ;M) = log
(

1−
Lα−K

∏
k=0

(1−P(sk+1:k+K
α ∣M))

)

(14)

whereP(sk+1:k+K
α ∣M) = ∏k+K

j=k+1M
j ,sj

α
is the probability of binding to subsequence

sk+1:k+K
α according toM. The derivative of the ranking functionρseq(sα ;M) with

respect to the parameterMk,b is equal to

∂ρseq(sα ;M)

∂Mk,b
=

1−exp
(

ρseq(sα ;M)
)

exp
(

ρseq(sα ;M)
)

(

∑
i

P(si+1:i+K
α ∣M)

1−P(si+1:i+K
α ∣M)

(

[si+k
α = b]−P(b∣M)

)

)

(15)
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We can then collect these derivatives into a vector to form the gradient∇Mρseq(sα ;M).
In the case where we are provided with quantitative featuresin the form of a

feature vectorxα , we can define the ranking functionρquant(xα ;w) to be a linear
function given by∇wρquant(xα ;w) = xα . Once we have computed both gradients,
we can evaluate

∇aρ(α;a) =
[

∇Mρseq(sα ;M)
∇wρquant(xα ;w)

]

. (16)

Ranking functions for discovering gapped motifs

In the case in which we wish to allow for gaps, we can posit a ranking function of
the same form as in Equation (14), but with an additional constraint that for degen-
erate positionsj in the PSSMM, we haveM j ,a = 0.25 for a ∈ {A,C,G,T}. This
constraint is equivalent to forcing certain positions to becontribute the same score
to the total sequence score regardless of what nucleotides occur at these positions.
Alternatively, we could regularize each degenerate position of the PSSM by adding
some constantCj to each entryM j ,a, whereCj is chosen so that for positionj is a
distribution that is close to being uniform. For the former constraint, we would sim-
ply update the entries of the PSSM for only non-degenerate positions. For the latter
constraint, we can regularize the appropriate entries ofM during the learning pro-
cess by simply addingCj after each update of the PSSM. An example of the PSSM
for such a gapped motif is shown in Figure 8. It is worth notingthat the length of
the gap, or number of degenerate positions in the PWM, can either be specified by
the user or it can be selected via cross-validation, as with the length of the PWM.
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Fig. 8 An example of a gapped motif.

The RankMotif++ method as a disconnected CDN

For the RankMotif++ model of [4], the corresponding probability over all pairwise
preferencesα ≻β is modeled by a product over logistic functions ofρ(α)−ρ(β ) so

thatFπ(r(Dn))≡ℙ[π ≤ r(Dn)] =∏
s

1
1+exp(−νrs)

= ∏
α≻β

1

1+exp
(

−ν
(

ρ(α)−ρ(β )
))

with ρ(α) corresponding to the sequence ranking functionρseqabove. This can thus
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be represented as a completely disconnected CDN where each function node cor-
responds toφs(rs) =

1
1+exp(−νrs)

and all pairwise object preferences are modeled as
being independent of one another. This is illustrated in Figure 9 for an example with
four sequencessα ,sβ ,sγ ,sδ to be ranked in which we represent the corresponding
joint CDF using two different CDNs.

Fig. 9 An example of an order graph over four nodesα ,β ,γ ,δ corresponding to the ordering
α ≻ β ≻ γ ≻ δ , with CDNs representing two different loss functions corresponding to differ-
ent independence assumptions about pairwise preferences.Whereas the RankMotif++ method of
[4] corresponds to an unstructured learning method which assumes independence of preference
variables, STORMSeq models the dependencies between preferences by introducing connections
between preference variables in the corresponding CDN.

Settings for STORMSeq

We ran STORMSeq for 100 epochs, or passes through the training observations, us-
ing a stochastic gradients optimization method. The learning rate was set toµ = 0.1
with a decay rate of 1/t at the end of each epocht. In order to provide regular-
ization on the CDN width parameterν, we set a constraintν ≤ 1. In the case
where we learn a PSSMM, we enforce the constraints thatMk,b > 0 ∀ k,b and
∑bMk,b = 1 ∀k = 1, ⋅ ⋅ ⋅ ,K. In the case where we learn weightsw, we set an addi-
tional L1-norm constraint of∥w∥1≤ 50. All computational runs were performed in
triplicate and the best optimum achieved on training data was selected for evaluation
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on test data using criteria described in the sections below.Additional details on the
learning method are provided in [10].

Methods for ranking sequences bound by transcription factors

Data was downloaded from the Supplementary Material section of [3], which con-
sisted of measured intensitiesyα for a set of sequences{sα ∈ S }. The dataset
contained five experiments across two microarrays (Array 1 andArray 2) profiling
the binding of the transcription factors Cbf1, Ceh-22, Oct-1, Rap1, Zif268. We used
the array labeledArray 1as the source of our training data, and the probe sequences
from Array 2as the source of our test data. We normalized the microarray intensity
data in both sets by first shifting microarray intensities such that the minimum in-
tensity was equal to one, then applying a log-transformation, as in [4]. We labelled
the 250 probe sequences which had the highest measured intensity as positives and
the 250 sequences with the lowest normalized intensities asnegatives. We then con-
structed the order graph over these 500 sequences based on preferences assessed
using the criteria used by [4] where we compute the median absolute deviationmof
the 500 normalized intensities and assertedα ≻ β if yα > yβ +3σ and at least one of
sα ,sβ were labelled as positive sequences as described above, whereσ =m/0.6745,
where 0.6745 is the median absolute deviation of the standard normal.

Using the above sequence ranking functionρ(sα ;M) for a given PSSM length
K, we ran STORMSeq and RankMotif++ using three random initializations each,
whereby we selected the model which maximized the Spearman correlation with the
training data, as per [4]. For each initialization, the PSSMM was initialized to a set
of random positive values and then normalized so that∑bMk,b = 1 ∀ k = 1, ⋅ ⋅ ⋅ ,K.
The MatrixREDUCE, MDScan and Prego methods were run on the training data
as specified in [4], and the resulting PSSM models were selected using the same
Spearman correlation metric as above. For all models, we variedK from 7 to 13 and
selected the value ofK which optimized the above Spearman correlation criteria.

Methods for ranking microRNA targets

We focused on the human genes in the let-7b transfection experiment which A) had
3’UTR sequence data provided by Ensembl and B) were providedwith both mRNA
expression and protein abundance data in 3,636 paired mRNA-protein expression
profiles obtained from cDNA microarray and mass-spectrometry across brain, heart,
liver, lung and placenta tissue pools in mouse [16, 22]. Thisyielded a total of 799
human 3’UTR sequences to be scored. We then selected the 400 sequences with
the lowest log-expression ratios as positives and labelledthe other 399 genes as
negatives. To assess the out-of-sample predictive performance of our method, we
selected a random sample of 250 positive sequences for our training data and the
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remainder for the test data. Similarly, we selected 250 sequences from the negative
group for our training set and the rest for the test data. We thus formed five indepen-
dent training/test splits in this fashion. Preferences were then assessed as described
above for the PBM data. Once we obtained the training and testdatasets, we ran
STORMSeq withK = 7 on each of the training datasets and selected the best model
out of 3 random restarts via the Spearman correlation between the learned ranking
function scores and the rankings seen in the training data.

In conjunction with the above data, we used the expression let-7b across brain,
heart, liver, lung and placenta tissue pools [1] with the mRNA/protein profiles men-
tioned above. Additionally, the∆∆G accessibility score was computed by the PITA
algorithm [15] using the mRNA sequences for each of the mousemRNAs in the data
from [22] and using the mature mouse let-7b sequence for the default algorithm set-
tings provided in [15].

We downloaded microRNA target predictions for the let-7b microRNA from
the Supplementary Data resources for the TargetScan [7], PicTar [17] and RNA22
[13] algorithms. The set of TargetScan predictions contains both conserved and
non-conserved targets and the set of RNA22 targets containsboth target predicted
from 5’UTR and 3’UTR sequences. We mapped all predictions tothe above mouse
mRNA and microRNA labels. Pairwise preference relationships were established
for a given 3’UTR sequence by summing over microRNA target site scores within
the given 3’UTR sequence and sorting scores. For a given prediction method, the
preferenceα ≻ β was established between two 3’UTR’ssα ,sβ if sα had a higher
score thansβ and at least one ofsα ,sβ were labelled as positive sequences as de-
scribed above.

Assessing ranking performance

To assess predictive performance of any given ranking method, we scored each node
α using the ranking functionρ(α) learned by the method. Given the ordering ob-
tained fromρ and given positive/negative labels for the nodes being ranked, we can
then compute Precision and Recall as

Precision=
TP

TP+FP

Recall=
TP

TP+FN

whereTP,FP,FN correspond to the number of true positives, false positivesand
false negatives respectively.

We also used the Normalized Discounted Cumulative Gains [14] metric, which
is commonly in use in information retrieval research. The NDCG accounts for the
fact that highly relevant sequences should be ranked higherby a given method, so
more weight should be placed on correctly ranking highly relevant sequences than
marginally relevant ones. The formula for computing the NDCG for truncation level
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n, or the number of top-ranking sequences, is

NDCG(n) = Zn

n

∑
j=1

2r( j)−1
c j

(17)

wherer( j) is an observed label indicating the level of importance of the sequence
(e.g.: amount of downregulation from a microRNA) andZn is a constant to ensure
thatNDCG(n) = 1 for the perfect ranking, so that higher NDCG indicates increased
ability to predict the ordering of sequences. The weights{c1, ⋅ ⋅ ⋅ ,cn} are an in-
creasing sequence of real-valued positive numbers which allow us to penalize errors
made in the top of the ranked list whilst discounting errors made for less relevant se-
quences. Here we chosec j = log2(1+ j) ∀ j = 1, ⋅ ⋅ ⋅ ,n. The advantage of the NDCG
metric is that it does not assume that sequences are to be classified as positive or neg-
ative and it accounts for both multiple label values and the fact that highly important
sequences should be ranked first. This contrasts with the useof Area Under the ROC
Curve, or AUC, which weighs misranking errors equally regardless of where they
occur in a ranked list. The NDCG can be also seen as an approximation to the cost
of experimentally validating or analyzing sequences at thetop of the list which are
not biologically relevant.

In the case of where we are scoring sequences bound by transcription factors, we
set the labelsr( j) to be the normalized array intensities, shifted to be non-negative
and scaled to obtain a maximum label of 1. For the purpose of evaluating on let-7b
targets, we set the above relevance labels to be the negativelog-expression-ratios
of each putative target, shifted to be non-negative and scaled to obtain a maximum
label of 1.


