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1 Introduction

The problem of sequence search, such as discovering tiatiseifactor (TF) bind-
ing sites, microRNA targets and structural genetic vasaremains a significant
challenge in genomics. Seveid novocomputational methods have been devel-
oped with the aim of searching for overrepresented seqeargirg sequence data
[2, 12]. Due to the degeneracy of such sequences, such nsetffiteth require the
use of sequence conservation in order to minimize falseipesates. To address
this, computational methods have recently begun to acdouaditional features
such as the accessibility of target sequences due to RNAdaopstructure [15],
contextual features [7] or other types of quantitative pirafidata [4, 8, 19, 20]. As
newer methods for discovering sequences and new profilsiqntdogies continue
to emerge, the issue of how to update existing sequencensemttods to account
for multiple types of data remains a significant challengeaddition to accounting
for several types of data, incorporating the large numbeafiputational predic-
tions already available will also be desirable.
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1.1 Previous work

In recent years, many different methods have been propasaddress the prob-
lem of integrating together large heterogeneous datasé¢tieicontext of sequence
search. For example, probabilistic generative models haea proposed in which
sequence search consists of inference and learning [8,iM&) gequence and ex-
pression data. Although such methods explicitly model thedct of sequences on
gene expression while accounting for uncertainty, a majatlenge is to account
for newer datasets as well as new sources of regulatorybitityaEach additional
dataset to be analyzed is likely to introduce a significamhlper of additional pa-
rameters and hidden variables, dramatically increasiagtist and complexity of
inference and learning under the generative frameworksTha the number of
types and sizes of data continue to increase, it is likely loéh model misspec-
ification and prohibitive computational complexity will imper the practicality of
probabilistic models with latent variables for discoversequences. Owing to the
difficulty in developing purely sequence-based models gtil&ory sequences, a
major challenge is then to incorporate additional datagypeler a unified tractable
and principled framework.

1.2 Sequence search as a problem of learning to rank

A strategic approach to the above problem can be obtainedtiygthat the prob-
lem of sequence search is inherently a problem of learningrtk, whereby we are
given a large number of possible sequences and only sontweglamall number
are of biological significance. Furthermore, there is ofiemell-defined notion of
preference between sequences. An example of this arises selaeching for tran-
scription factor sites, whereby some sites are more stydmglind than others by
certain transcription factors. Thus when discovering segas, it is desirable to
explicitly model the fact that sequences do not fall into whistinct categories of
positives and negatives but instead have different degregignificance attached
to them, so that a plausible model should assign a highee $oosequences with
higher importance.

Some methods have in fact formulated the problem of sequsareh as one of
ranking, so that they assign a score to each sequence witmfieit assumption
that high-scoring sequences are more likely tdbea fidethan low-scoring ones.
The idea of discovering sequences using an explicit ranfarmulation has been
explored previously by [3, 4, 20] in the context of using théerings obtained
from microarray intensities to learn position-specificraeg matrices (PSSMs) for
transcription factor binding sites (TFBS). This was showsignificantly improve
predictive accuracy with respect to other model-based ousthas no assumptions
on the functional relationship between measured intessand sequences needed
to be made in order to learn to rank sequences. The improwadaxy of such
ranking-based methods with respect to model-based methedssuggests that a
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good method for discovering sequences would be one spdlgiftadored to the
problem of learning to rank.

Given the above methods for ranking sequences, our goalihéreexpand on
previous work along three directions. First, we addrespthsence of statistical de-
pendence relationships between variables in the problelanddng, since the rank
of one sequence can only be determined given the ranks cdallemces. Second,
the scoring function used by the previous methods of [3, 4v&is parameter-
ized by a PSSM and so only accounted for sequence inputs.viéevall allow for
ranking functions which can account for rich feature spas#ained from quan-
titative measurements such as expression profiling dasdlyi_ay formulating the
sequence search problem as one of ranking, we can leverfggeation across
several experimental datasets and diverse predictionatstfia the orderings over
sequences that each provides. Under the framework of teatairank, orderings
provided by diverse computational methods and those peovizy experimental
data are all comparable and readily accounted for, evenadsored/predicted val-
ues between different prediction methods may be difficuttdmpare. Thus, given
that we observe many different partial orderings providgediiverse datasets and
prediction methods, our aim will be to predict orderingsrosequences so that se-
quences which are often highly ranked across differentrxeats and prediction
methods should also be highly ranked by our method. The gexptramework of
ranking then offers three significant advantages over pusvapproaches for se-
quence search. First, the framework makes minimal assangéibout the relation-
ships between sequences and measured/predicted labéhe feequences and so
largely avoids the issue of model misspecification. Seciradlows us to leverage
orderings provided by heterogeneous datasets and pmditiethods which may
have little overlap with one another in the sequences thatado, but are neverthe-
less informative when combined together under a single inadstly, predictive
accuracy is improved by explicitly modelling the dependes@volved in learning
to rank.

To model the statistical dependencies in learning to ramkcan take advantage
of the structured ranking learning framework which was nélgeproposed in [10].
This probabilistic framework for learning to rank is basedeoovel class of proba-
bilistic graphical models called cumulative distributioatworks [9, 11], or CDNs.
In learning to rank in a structured setting where we accourdépendence relation-
ships between model variables, siructured ranking learningthe goal is to learn
a ranking function under a structured loss functional whdicbounts for the statis-
tical dependence relationships involved in predictingyisie preferences between
sequences, as misranking one sequence affects how we tarlsetjuences. In the
context of discovering sequences, we can then interpret af ggediction meth-
ods and a set of experimental measurements as observatiicts eonvey partial
orderings over some subset of the sequences of interest. Wépresent STORM-
Seq, a method formulated which scores sequences given afsatures and a set
of orderings over subsets of the sequences to be ranked. &hodgeneralizes
the RankMotif++ method of [4] to a structured learning seftivhere we can A)
account for the dependencies in the problem of ranking, &)riporate rich feature
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Fig. 1 The STructured ranking of Regulatory Motifs and SequenS8©ORMSeq) method. Given
multiple independent observations conveying variousramge over sequences and given the ob-
served sequences and input features extracted for eactvatize (e.g.: mMRNA, microRNA and
protein measurements, sequence context features), STORM&ns a ranking function such that
the probability of generating the observed orderings isimeed.

spaces such as quantitative measurements of MRNA andrpexi@iession in addi-
tion to sequence data, and C) account for diverse compo#dfwediction methods
as additional data. The outline of the method is illustratdeigure 1. We will apply
the proposed framework to the problems of scoring transerifiactor binding sites
and microRNA targets, although the framework is generalghdo be applied to
a wide variety of bioinformatics problems, such as rankieyapeutic drug targets,
finding genetic associations or scoring protein-proteti@ractions.

2 STORM Seq: STructured ranking of Regulatory Motifsand
Sequences

We will begin by describing the problem of structured ramkiearning for discov-
ering sequences using the framework of [10]. Suppose we Wwishore sequences
in the set. Let sy be a particular sequence if which is indexed bya. Here,
a sequence is any segment of nucleotides or amino acids fohwhe can extract
features. For example, in the case where we wish to discoi@oRNA targets, a
‘sequence’ may correspond to the entire 3’ untranslatedneg@'UTR) for a par-
ticular gene, so that one has access to the sequence of th& 343 well as other
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features for the 3'UTR sequence. These can include its &vekpression across
many tissues/cell types, the abundance of proteins whikranslated from the se-
quence preceding the 3'UTR and the expression of a microRNiswputatively
targets a site in the 3'UTR sequence. This is illustratedgufe 2(a): for each node
o, we are provided with a corresponding sequesycand a set of featureg, which
will aid in learning to rank the sequences.

Suppose now that we are given a selafbservation® = {Dy,--- ,Dn}, where
each observatioD,, provides an ordering of the sequences in some sulfs€t.~.
Here, an observation contains a partial ordering of the execgs to be ranked. For
example, in the context of scoring microRNA targets, omigsimight be provided
by gene expression values in microRNA overexpression @xpaits [8] or they can
be provided by scores output by computational predictiothous [7, 13, 17]. The
orderings over sequences in an observation can then bed/gsva set of pairwise
preference relationships between sequences, which wdevitite usingr - 3. For
a given observation, we can then represent the orderinggleataequences as a di-
rected graph in which a directed edge (a — () is drawn between two nodes 3
if sequencesy waspreferredto sequenceg within observatiorD,. We will denote
this directed graph as the order gragh= (i, En) for observatiorD,,, whereE, is
the set of all edges in the order graph and each wod#&/, corresponds to a unique
sequencey € .n. An example of such an order graph is shown in Figure 2(b)sThu
the n'h observation consists of the sBt, = {Gn, {Sa;Xa }aev,}, SO that our data
consists of a collection of independent observatighs: {D1,--- ,Dn}. One im-
mediate advantage of the proposed framework is that omgeawer sequences can
be compared between observations despite the fact thatineegsredicted values
between observations may not be comparable. Furthernhererderings conveyed
by different observations can be partial and can be defineddifferent subsets of
sequences.

To combine the different orderings together, we now defimanking function
p(a) : Vhn — R which assigns real-valued scores to sequences. If we mbéel t
stochastic scorgy of a given nodex as

Oq = P(a) + Ty, (2)

wherert, is a random variable specific to nodethen we can define the preference
eventa - 3 as being equivalent to the following:

a-Beme=m—Ty <p(a)—p(P). ()

Here, 1, g is apreference variableetweer, 8. Thus for each edger, 3) in the or-
der graptGn, we assign a corresponding continuous-valued preferearelert, g
which should satisfy the above inequality in order for theference relatioar > 3

to be observed. Now we can define the quantigyp,Dn) = p(a) — p(8) and col-
lect these into a vectar= r(Dy; p) € RIEl of pairwise differences, wher&| is
the number of edges in the order graph. Similarly,7tgt= 1,3 be the preference
variable defined along edgdn the order graplt,. Having defined the preference
variables, we must now select an appropriate loss measulesiming the ranking
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Fig. 2 The STructured ranking of Regulatory Motifs and Sequen8@©ORMSeq) method. a) Fea-
ture extraction. For each sequergeto be ranked, we assign a corresponding nodend a set

of corresponding features which are relevant to ranking#tgience. For the example shown, the
sequences, may correspond to the sequence for the entire 3’ untramstagon (3'UTR) of a
gene, so that the feature vectqy include the expression of the gene carrying the sequenee, th
abundance of protein produced from the coding region fogtree carrying the sequence and the
expression of a putative microRNA which targets the segeiemcAn observation consisting of an
order graph over three nodes where each rgs yin the order graph corresponds to a unique se-
quencesy, Sg, Sy to be ranked, and each directed edge expresses a prefeetatagnship between
two nodes. An order graph can be readily established fronpleglue scores, expression ratios
or other available statistics which provide an indicatiéthe relevance or importance of a given
sequence. In this example the order graph corresponds todeenga > 3 > y. Each edge in the
order graph then corresponds to preference variaplgsri,, Ty; ¢) The corresponding cumula-
tive distribution network (CDN) defined over the preferenaeiables specified by the observation
of b). The CDN models the joint CDF over the preference védemland allows us to compactly
specify dependencies between preferences so we can pestiarctured ranking learning [10]

function. For a given observati@y, we will choose the loss measure to be the neg-
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ative log-probability of observing the preference relasbips between sequences in
order graphG,. From Equation (2), this will take the form of a probabilityeasure
over events of the typs: < r(e; p,Dp) so that we obtain

P[En[Va,p] =P [ [e<r(ep, Dn)]] = Fr(r(Dn;p)), 3)

ecEp

whereF;; is the joint CDF over the preference variables Thus, for a given ob-
servationDy, any probability over the set of preference eventg < r(e;p,Dn)
will take on the form of a joint CDFF,T(r) over the preference variables=
{T%g} (a,p)cEy Where the CDF is evaluated at(Dn; p).

Given multiple independent observatiagdis= {D;, - -- ,Dn }, we can then define
a structured loss functional?(Z;p,Fr) as the log-probability of independently
generating the observed orderinggin so that

N
Z(2:p,Fr) =~ logFn(r) (4)
n=1

where each term in the loss functional is the log of a joint CIVRilst each of these
log-CDF terms is defined over many preference variables avittgh degree of de-
pendence amongst variables, we can nevertheless repeaserterm compactly as
a cumulative distribution network (CDN) [9, 11], which is eaghical model repre-
senting the joint CDF of several random variables (see Agp@nAn example of a
possible CDN representing a joint CDF over three pairwigégrences is shown in
Figure 2(c).

Having defined the structured loss functiof& Z; p, Fr), the problem of learn-
ing to rank sequences from observati@ns: - - , Dy will then consist of minimizing
the loss functional with respect to the ranking functmand the CDH-;. Let 6 de-
note the vector of parameters which parameterize both tiléng functionp and
the joint CDFF, so that we can write the structured loss as a functiof, afr

L(D,0) = L(D;p,Fn) = % Z(Dn;0) = — % logFr(r(Dn; 0)).  (5)
n=1 n=1

In order to optimizeZ (Z; 0) with respect to9, we will assume that we can com-
pute the gradierils-£(Dy; 0) for each observatioB,,. Given the gradient, we can
then proceed to optimize the structured loss functionalgiai stochastic gradients
descent (SGD) algorithm whereby for each observeligrwe construct a CDN for
order graphG, and we update the parameters of the model according to the rul
0 + 6 — ule.Z(Dn; 0), wherep is a learning rate parameter for the SGD algo-
rithm. This leads to an efficient method for learning to raa&,we only need to
store the CDN for a single observation for the purpose of attimg a gradient and
updating the model parameters: this is illustrated graglyiin Figure 3.



8 Jim C. Huang and Brendan J. Frey

for epoch = 1,2,..., T

forn=1,.., N

Construct ‘.

CDN from 0 _— @ @
order graph

for @

observation n

['(DM 0) = —log I (T(Dn§ 0))

Stochastic Compute gradient VgL(D,,; 0)
learning Update parameters @ «— @ — ‘UVGL(D”; 0)

Fig. 3 lllustration of the STORMSeq framework. For each obseovatD,, we construct a
CDN defined over preference variables corresponding to sdyehe order graptG, (top).
For this example, we have an order graph defined over foursnaede six preference vari-
ables. The CDN then models the joint CDF over the six prefsrevariables as a product
of functions: here the model consists of a product of threetions so thaFn(r(Dn;9)> =

Qo (Fa,5:Tap:Tay)®B(rap '8y 8.5 @ (Fay: gy Tys). Once the CDN has been constructed, we
can perform stochastic learning of parameters by compttiegradient of the log-CDF modeled

by the CDN and then updating the vector of paramefidtsottom). We can then repeat this process
for each observation and for a numiBenf epochs, or passes through the training set.

2.1 Ranking using sequence and quantitative features

In order to adapt the above framework to the problem of ramkaguences, we will
use a ranking functiop(a) which has the general form

p(a)= psecﬁsor; M)+ Pquant(xa W) (6)

wherepseq Pquant are functions which assign scores to the sequegn@d its cor-
responding feature vectot,. Here, it is possible to specify different parametric
forms for p(a) which assign scores to sequences under various assumgtions
order to score any given node based on sequensg alone, we will consider
the sum of contributions of subsequencesspfunder the assumption that each
subsequence contributes independently to the overak goos, (see Appendix).
We will choosepquant to be a linear function of the quantitative features, so that
PquantXa; W) = w! xq4. Given these parameterizations, a sequeszceill have a
higher score if botpseqandpguant assign high scores .
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The proposed framework of learning the ranking functiomfrobservations
is then summarized as follows: given a training set of olet@ms consisting
of sequences to be ranked, associated quantitative featune a partial order-
ing over the sequences, we wish to learn a ranking fungtitm) which max-
imizes the probability of generating the observed orderibhg assigning higher
scores to those sequences which are most consistentlyyhigihked in the ob-
servations{D1,---,Dn}. In order to learnp(a), we can compute the gradients
Om Pseq(Sa; M), OwPquantXa; W) (See Appendix) in order to perform gradient-based
learning. The ranking function is such that we can accourséguence data in ad-
dition to other quantitative features such as expressiomsorements. The use of
CDNs to represent the structured loss functional for leayro rank then allows
us to account for the fact that learning to rank is inhereathyoblem in which one
must account for the presence of statistical dependerat@omeships between model
variables.

We emphasize at this juncture that STORMSeq has been foredlitaa general
way so that it is applicable to many different problems in ethive wish to learn
a ranking function using multiple instances of orderinggjuence data and other
quantitative features. To illustrate how STORMSeq mightibed in practice, we
will apply it to two problems of sequence search. In the fifghese problems, we
will score sequences bound by transcription factors udiegprotein binding mi-
croarray data of [3]. In the second, we will score targetshef let-7b microRNA
in human retinoblastomas using both microRNA overexpogsdata [8] and other
quantitative features such as protein abundance and mRpi&gsion levels of tar-
gets. Before we proceed, it will be instructive to study thlation between STORM-
Seq and a previous method for learning to rank sequencesdrdetings over se-
guences obtained from microarray measurements.

2.2 The RankMotif++ model as a cumulative distribution netwk

It is worth noting that in the RankMotif++ model of [4], the jelotive being mini-
mized corresponds to the log-CDF over preferences undasthenption that pref-
erence variables are mutually independent. More pregigeliRankMotif++ the
loss function is given byZ(6) = logF(r(Dn)), where the probability over all
pairwise preferences > (3 is represented by a product over logistic functions of

fap = p(a) — p(B) SO that

1 1
Fr(r(Dn))=P|t<r(Dyp)| = =
r[( ( n)) [ — ( n)} |:| 1+exq_vrs) crl:lﬁ 1+eXp(—V(p(G)—p(ﬁ)))
(1)
with p(a) = pseqSa) andv > 0. Thus the above loss function can be represented
using a disconnected CDN model where each function nodegmonds to the CDN

function g(rs) = (1+ exp(—vrs))f1 and all pairwise object preferences are mod-
eled as being independent of one another.
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3 Results

3.1 Discovering transcription factor binding profiles

We will first apply the proposed structured ranking learrfimgnework to the prob-
lem of ranking sequences using measurements from a prateding microarray
(PBM) experiment. We obtained PBM data from the Supplemgritaterial sec-
tion of [3], which consisted of measured intensities of 3&rprobes bound by five
different transcription factors Cbfl, Ceh-22, Oct-1, Rapif268 across two exper-
imental replicate arrayArray 1 andArray 2. The PBM data consisted of intensity
measurements, for a set of sequencds, € .7}, where each probe on the array is
indexed bya ands, denotes the nucleotide sequence of a given probe on the array
We used the array labelédray 1 as our training data and the probe measurements
from Array 2 as test data. The goal here is to then learn a ranking funatioch
assigns scores to probe sequences under the assumptitigtheit scores should
indicate an increased probability of a TF binding to a seqaen

We applied the STORMSeq method and evaluated the resudtirigng function
on the test set. In order to compare STORMSeq to similar nasthee also ran the
MatrixREDUCE [6], MDScan [18], Prego [20] and RankMotif++ethods on the
same training data and evaluated these on the same tessdadhe settings spec-
ified by [4] (see Appendix for details). Here we applied STOR without using
additional quantitative features to provide a fair comgamito the other methods
which rank sequences using only sequence data. The perioenod all five meth-
ods for the above five TFs are summarized in Figures 4(a) aodusfng preci-
sion versus recall curves, as well as Normalized Discou@tetulative Gain [14]
curves which account for how well a method ranks high-intgrsequences (see
Appendix). The use of the NDCG metric here is well-suitechmproblem at hand,
as the truncation level can be interpreted as the number of sequences to be further
validated or analyzed, so that a higher NDCG value is obthihthe most signif-
icant sequences appear at the top of the list in their comeler of significance.
Here, the significance of a sequence is determined by thegstrevith which a
transcription factor binds to it, so that the highest schreutd be assigned to the
most strongly bound sequence. Figures 4(a) and 4(b) dermatasihat by ranking
in a structured learning setting and by making no particatsumption about the
relationship between sequence s and measured PBM ingssite increase pre-
dictive accuracy as measured by precision, recall and ND&fpared to the other
unstructured prediction methods such as RankMotif++. Ini@éar, according to
the NDCG metric, our method of ranking also has increasedracyg in terms of the
ranking itself, so that sequences with higher intensittesiaore likely to be ranked
higher by STORMSeq than by the other models.

The corresponding PSSMs found by each of the above methedshaivn in
Figure 5. As can be seen, the PSSMs learned by STORMSeq asistenn with
those found by the other methods as well as with PSSMs prelyioeported for
this dataset [3, 4]. It is worth noting here that the consersgguence for RAP1
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Fig. 4 a) Precision versus recall using five different methodster@bfl, Ceh-22, Oct-1, Rapl,
Zif268 transcription factors studied in [3, 4]. The methetiewn are MatrixREDUCE (red), MD-
Scan (cyan), Prego (green), RankMotif++ (black) and STORYyI®Ilue); b) The corresponding
curves showing Normalized Discounted Cumulative Gains@&) versus the truncation level, or
the number of top-ranking sequences. Both a) and b) shovbyhainking in a structured learning
setting using STORMSeq, we generally improve predictiv@ieacy, in terms of precision, recall
and NDCG, with respect to the other unstructured learninthats shown here.

found by our method, as well as the consensus reported byréige BRnd MDScan
methods agree with the 1st 6 base positions of the widelyighad motifACACCC
[21]. Also, observe that while the PSSMs obtained by STOR#/&mn be degen-
erate at many positions for various TFs, the improved peréorce of STORMSeq
over these methods suggests that these methods are likahylevestimate the de-
generacy of the motifs to be discovered as a consequencedal misspecification.

One reviewer has pointed out that the particular sequemégng function used
above is not designed to allow for gaps in motifs [5]. One atlwge of the struc-
tured ranking learning framework is that the user can chdasa many ranking
functions for any given problem, so that the user can spexifgnking function
which accounts for the presence of gaps, or other speciftaresof the motifs
to be found. In the case where we wish to learn a PSSM for gappiis, we
can constrain the degenerate positions in the PSSM by eimisiy the entropy of
the nucleotide frequency at these positions: we providexamele of this in the
Appendix.

Having applied the structured ranking learning frameworthe problem of dis-
covering transcription factor binding sites, we will alsendonstrate the usefulness
of STORMSeq for discovering microRNA targets, which alsosist of short nu-
cleotide sequences which regulate the activity of genes.
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Fig. 5 Motifs found by the MatrixREDUCE, MDScan, Prego, RankM#tifand STORMSeq
methods (rows) for each of the TFs.

3.2 Discovering microRNA targets

In addition to learning to rank transcription factor binglsites, we will also demon-
strate the usefulness of STORMSeq for ranking microRNAe&txgMicroRNAs
consist of molecules of 22-25 nucleotides which target mRi#scripts through
complementary base-pairing to short target sites, in adasmalogous to the op-
eration of transcription factors. However, unlike traistion factors, microRNAs
are generally inhibitory in their activity, so that microRNactivity generally re-
presses the activity of their target genes either by redyitia abundance of their
target MRNA transcripts or by repressing translational/égtof their target mR-
NAs [1, 8]. There is substantial evidence that microRNAs amémportant com-
ponent of the cellular regulatory network, providing a pwanscriptional means to
control the amounts of MRNA transcripts and their proteodpicts [1, 7, 8, 15]. As
a consequence of their important role in gene regulatiomynpaevious methods
have been proposed for performing genome-wide discovetsrgets of microR-
NAs [7, 8, 13, 17].

We will focus here on the let-7b microRNA and a dataset prafithe expression
of human mRNAs in WERI-Rb1 retinoblastoma samples aftetrdnesfection of a
synthetic RNA duplex of the mature let-7b hairpin [8]. Undee assumption that
microRNA regulation is causes reduced mRNA expressiomwise preference re-
lationships between sequences were asserted using thestaria as in [4], but us-
ing negative log-expression-ratios of expression fromeh&b transfections. Thus,
the score of a sequence should correspond to the amount ofcimulation by let-
7h. We constructed our dataset in a fashion similar to thed ursthe previous exam-
ple for transcription factor binding sites (see Appendix)contrast to the previous
problem which had relatively few sources of data variapiliere we are provided
with in vivo expression measurements of genes which may have sevdeakedif
regulators, some of which may themselves be regulated BbleThe problem of
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scoring microRNA targets is therefore representative eftyipe of problem more
commonly encountered in genomics, where the goal is to diss®equences in the
presence of many sourcesiafvivo regulatory variability. The hypothesis here is
that we can leverage additional information in the form afdpendent quantita-
tive measurements and computational predictions in orlbetter account for the
variability in orderings over sequences.

To learn to rank microRNA targets, we used human 3'UTR secgidata, mouse
mRNA expression, mouse let-7b expression and mouse prateindance data
[1, 22, 16] across brain, heatrt, liver, lung and placentsugspools, whereby the
mouse mMRNAs were selected as homologs of the human mRNAsimalibve
WERI-Rb1 assay. Furthermore, the expression for the leti¢loRNA in the above
tissue pools corresponds to that of mouse homolog for l€6&b Appendix). Here
we selected sequences which have associated mouse mRNAaah pneasure-
ments.

In addition to expression features, we would also like tawaot for other contex-
tual sequence features, such as microRNA site accessibiithis end, we ran the
PITA [15] algorithm for computing an accessibility score &ach 3'UTR sequence
given the mature let-7b sequence. This score, which we it kdenote a4AG, is
a function of the accessibility of a target site given the ntikely secondary struc-
ture of the target MRNA. Combined with the above mRNA, midi#Rand protein
abundance features, this yielded a total of 16 quantitéatires for each sequence
to be scored. Thus for this problem, each 3'UTR sequencesponds to a putative
let-7b-target interaction so that let-7b putatively tdsg least one target site in the
3'UTR sequence. The above 16 features thus form the featatenx, which we
will use for learning to rank microRNA targets.

3.2.1 Incorporating diver se computational predictions

In addition to the above features, we would like to also ipooate computational
target predictions for let-7b from the PicTar [17], Targed8 [7] and RNA22 [13]
sequence-based target prediction methods. In order tgrassbres to candidate
microRNA targets, each of these methods makes use of vamittesa such as con-
servation and contextual sequence features. The sconestduyt these prediction
methods can be then used to generate an order graph ovenseguso that each
method provides a partial ordering over some subset of iRidfotarget interac-
tions (see Appendix).

Given all of the above, we applied STORMSeq under threenggsttivhere 1) we
only used sequence data for learning to rank targets, B) Weused quantitative
features (MRNA and microRNA expression, protein abundancAAG), and C)
we also used information provided by diverse computatipnadiction methods in
addition to both sequence and quantitative features (s@edix). To assess the
out-of-sample predictive performance of our method, wectetl a random sample
of 250 positive sequences for our training data and the meeaifor the test data.
Similarly, we selected 250 sequences from the negativepgimuour training set
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Fig. 6 Precision versus recall for different STORMSeq learningfigurations using expression
data for mRNASs in response to let-7b transfection [8]. Byomporating additional sources of
sequence information, sequence context and quantitatofainpg features, STORMSeq achieves
higher accuracy (blue) than using 7-mer counts to predisindegulation (black), using sequence
data alone (green) or sequence data combined with quarifattures without computational
predictions as additional data (red).

and the rest for the test data. We thus formed five indepenidening/test splits in
this fashion (see Appendix). For each of the five train/tegasets, we computed
precision and recall for each of these experimental settifilge resulting precision
and recall curves, averaged over the five test sets, are simoigure 6. As can
be seen, incorporating sequence data, quantitative &saturd computational pre-
dictions together under one model yields an improvement@diptive accuracy
compared to using sequence alone or sequence in tandemuaitiitative features.
This indicates that by leveraging multiple sources of infation about microRNA
regulation, we can significantly increase the accuracy witich we discover mi-
croRNA targets.

For further validation, we show the cumulative distribuatiof AAG scores for
the top and bottom 100 targets ranked according to STORMSgqre 7(a)). We
expecta priori that sequences with low&AG score are more likely to be bound by
a targeting microRNA than not. As can be seen, high-scodrggts have a signif-
icantly lower averagéAG value than low-scoring target® & 10-2°, Wilcoxon-
Mann-Whitney test), demonstrating that the targets dism by STORMSeq are
likely to be genuinely targeted by let-7b. Furthermore, gietein abundances
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Fig. 7 a) Cumulative frequency plots of t®AG scores on the top and bottom 100 targets as
ranked by STORMSeq. High-scoring STORMSeq targets gdpdrale higher target site acces-
sibility and so have a loweAAG value compared to low-scoring targei < 10-2°, Wilcoxon-
Mann-Whitney); b) Cumulative frequency plots of proteiruatiances for top and bottom 100
targets as ranked by STORMSeq. High-scoring STORMSeqttahgwe significantly lower target
protein abundancé®(= 7.73x 10~%) as a result of microRNA repressive activity.

for the top and bottom 100 targets differed significantly asll WiFigure 7(b),
P = 7.73x 10~%), adding support for the hypothesis that the targets wheckive
a high score under STORMSeq dr@na fide as microRNA activity generally leads
to lower protein abundance and mRNA transcript abundancg B, 15].

To assess the use of purely sequence-based methods fordhlem, we also
ran the MEME [2] and AlignACE [12] algorithms using defaulittsngs on the
250 positive sequences for each training set and examiredetulting PSSMs
reported by both algorithms. The PSSMs obtained from thetbods can then be
used to rank sequences. We found that for all five trainisgtatasets, none of the
PSSMs discovered by MEME and AlignACE led to any significasitity to rank
let-7b targets (data not shown), suggesting that withodit@dal information in the
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form of sequence conservation or quantitative measuresy@minovoapproaches
to scoring sequences are significantly more likely to findrponodels by virtue of
either using only sequence information or by virtue of madelspecification.

4 Discussion

We have presented the STORMSeq method for learning to ragikatery se-
quences by combining heterogeneous datasets and divergautaiional predic-
tion methods. The explicit formulation of sequence seasch problem of ranking
accounts for the fact that different sequences can havapteulevels of signifi-
cance and any method for ranking should correctly orderesecps by assigning
a high score to biologically significant sequences. In paldir, by accounting for
the statistical dependence relationships which existamiag to rank, STORMSeq
improves predictive performance over other unstructurethods for learning to
rank. In addition, STORMSeq largely avoids many of the issafanodel misspeci-
fication and complex inference which may arise when modghiultiple heteroge-
neous datasets. As STORMSeq is formulated in fairly gerterais, it can also be
applied to other problems of sequence search such as ratkiggargets, discov-
ering genetic associations or scoring protein-proteieraxtions, although we have
not focused on such applications here.

In the case of ranking microRNA-target interactions we hehavn that incorpo-
rating diverse computational predictions increases ptigdiaccuracy as measured
by precision and recall. It should be noted that one mustoeseecare in what ad-
ditional sources of computational predictions are incoafex into the analysis. We
found that by incorporating computational prediction noethiwhich had inherently
low accuracy, we could in fact decrease the predictive aagunf our method (data
not shown). In our case, particular computational predlicthethods were included
in our analysis on the basis of a previous study conducted]iwfiich gauged the
predictive accuracy of a variety of microRNA-target preidic methods according
to a variety of metrics. We caution that in the case in whidia darelatively limited
in size, including computational predictions from methedsch have low accu-
racy can adversely impact the accuracy of STORMSeq. A plessitbension to the
framework proposed here is to allow for outlier detectiontisat the model can
discount the impact of outlier observations.

One reviewer pointed out that the optimization problem gesolved is gen-
erally non-convex and may assign high probability to défgrorderings over se-
quences. Although the underlying ranking may not be uniguefgiven class of
ranking functions and/or loss functionals, there may begelaumber of —it par-
tial orderings over sequences which are consistent witmadenlying (and possibly
unidentifiable) total ordering over sequences. Thus, atjhanany orderings may
be possible and STORMSeq may learn one of these, those wigichast useful in
practice are those orderings in which tledevantsequences are correctly ranked,
while less of a penalty should be assigned whether we haveatlyrranked the less
relevant sequences. Thus the issue of whether the rankiredevfant sequences is
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identifiable may be of concern, so that standard techniquesvbiding poor local
minima must be used and the solutions obtained from multgdéarts should be
compared with one another.

An important issue which arises often in practice concenagractability of the
proposed framework. In a setting in which one is given a langmber of sequences
to be ranked for a single observation, the number of edges arder graph may in
the worst case readd(n*), wheren is the number of objects in the observation. As
storing and processing such a large observation may betable, we have made
use of the mean absolute deviation (MAD) criterion for atisgrpreference rela-
tionships (see Appendix), which has the effect of redudmggrtumber of pairwise
preferences to be modeled. One can devise similar schenmmeduoe the number
of pairwise preferences to be modeled, as many of theseepitessent pairwise or-
dering constraints between very highly relevant sequeacdsrrelevant ones. We
have also found that one can randomly break up an obsendgitmed over many
sequences into a set of multiple observations defined ovallemsubsets of the
sequences. Each of these observations could then be tyantatieled using the
proposed method. In addition or as an alternative to the gbmve can choose a
CDN graph which is tractable and amenable to fast compuistidn advantage
of the proposed framework is that it is possible to use sp&ZBN graphs which
tradeoff the presence of dependencies between pairwiger@nees for tractability
and speedups in computation time.

We have applied STORMSeq to the problems of scoring seqedmmend by
transcription factors and scoring microRNA targets, whgngerforming structured
learning and combining different data types with compotal predictions was
shown to improve predictive accuracy. In the case of rankimgroRNA targets,
features relating to expression patterns in mouse provieattease the ranking ac-
curacy of scoring targets in human retinoblastomas. Thggests that STORMSeq
may also be useful for problems in comparative genomics asnaipled means
for combining diverse datasets from different speciese0ititeresting extensions
of the STORMSeq would include scaling the proposed framkwwgenome-wide
detection of regulatory sequences as well as using rich@esentations for the
ranking function which could account for direct interaasdetween the sequences
to be ranked.
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Appendix

Cumulative distribution networks

The CDN [9, 11] is an undirected bipartite graphical modekhich the joint CDF
F(z) over a set of random variables is modeled as a product ovetiéurs defined
over subsets of these variables. More formally, for vaga@tZ, the joint CDF is

given by
F2)= [ @) ®)

whereSis a set of function indices and fee S, ¢(zs) is defined over some subset
of the variables irZ. For detailed derivations of the properties of CDNs, inahgd
marginal and conditional independence properties, we th&ereader to [9]. The
CDN framework provides us with a means to compactly reprtasettivariate joint
CDFs over many variables: in the next section we will forntella loss functional
for learning to rank which takes on such a form.

A structured lossfunctional for learning to rank

Let the ranking functiom(a) = p(a;a) be parameterized by the parameter veator
sothat (Dn; p) =r(Dn;a). For a given order grapBy, the structured loss functional
is then given by

Z(Dn; 8) = .2 (Dp;a,v) = —logFr(r(Gn;a)) = —log@(r (Dn;a)) 9)

wheref = [a v} is the set of parameters. Here we can choose from a wideyafiet
CDN topologies and functional forms for the CDN functions;ls as the particular
CDN used in [10]. We will represent the joint CDF using a ssm@DN function
@(r) set to a multivariate sigmoidal function so that

1

or) = 1+ yeexp(—vr(ea,Dp))’

v>0. (10)

For the given CDN and ranking functions, the learning probfer the current ob-
servatiorD,, then becomes
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min Zlog <1+

In order to solve the above optimization problem, we will asstochastic gra-
dient descent algorithm which will require us to computeghedient1,.% (Dy; 6)
for each observatiob,. This is given by

Z exp(—vr(ga, Dn))> st. v>0. (11)

eckn

Oa (Dn; 8) = vo(r (Dn;a)) Z exp(—vr(e;a,Dyn))0ar (€a,Dy),

ecktn
with

Oar (€;a,Dn) = Uap(a;a) — Uap(B;a)
(12)

The derivative with respect to the CDN function weighis then given by

Ay [‘Z(Dn;e)} =— Z r(e;a,Dn)exp(—vr(ea,Dn)) ¢(r) (13)

eckn

With the above gradients, we can then proceed to construdMd ©r each ob-
servationD,, and updating the parameters of the model according to thee rul
6 «+ 6 — uyZ(Dp; 0), wherep is a learning rate parameter.

Ranking functions for sequence and quantitative features

Suppose we are given a sequesg®f lengthL, which we would like to score. Let
s¢ktK-1 pe a subsequence sf of lengthK starting at positiork and lets), be the
symbol observed at positignn sequenceg, . Given a PSSMM of lengthK (where
My is equal to the probability of emitting symblolat positionk of the PSSM) we
can define the score for sequersgeas the probability that a transcription factor
binds to at least one subsequence of letgth s, according to the PSSM, so that

La—K

se M) =1 1— 1—PS§+1:k+KM 14
pred(saiM) =log (1= [ (1= P( ¥ M) (14)

whereP(skH KK M) = n‘fiEHMj s, is the probability of binding to subsequence

SSHLHK according toM. The derivative of the ranking functiopseqSo; M) with
respect to the parametel , is equal to

0PsedSa;M) 1 —exp(PseqSa;M)) P(s; 1K M) (S =b
Mk eXp(Pseq(Sa; M )) N

I 1_P(§a+l:i+K|M) f ]—P(b|M))
(15)
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We can then collect these derivatives into a vector to foemgtiadientiy Psed Sa; M ).

In the case where we are provided with quantitative featureébe form of a
feature vectoxs, we can define the ranking functigiyuant(X«; w) to be a linear
function given byOwPquantXa; W) = Xq. Once we have computed both gradients,

we can evaluate ( )
ooy | OmpsedSa;M
Uap(asa) = [ prquant(XG;W) :| ' (16)

Ranking functions for discovering gapped motifs

In the case in which we wish to allow for gaps, we can posit &irapfunction of
the same form as in Equation (14), but with an additional tan that for degen-
erate positiong in the PSSMM, we haveM; 5 = 0.25 fora e {A,C,G,T}. This
constraint is equivalent to forcing certain positions toacbatribute the same score
to the total sequence score regardless of what nucleotates at these positions.
Alternatively, we could regularize each degenerate positif the PSSM by adding
some constart; to each entryM; a, whereC;j is chosen so that for positiopis a
distribution that is close to being uniform. For the formenstraint, we would sim-
ply update the entries of the PSSM for only non-degeneraitipns. For the latter
constraint, we can regularize the appropriate entried afuring the learning pro-
cess by simply addinG; after each update of the PSSM. An example of the PSSM
for such a gapped maotif is shown in Figure 8. It is worth notihagt the length of
the gap, or number of degenerate positions in the PWM, cherdite specified by
the user or it can be selected via cross-validation, as Wwéhength of the PWM.

TTT
AMINWAAANML

Fig. 8 An example of a gapped motif.

The RankMotif++ method as a disconnected CDN

For the RankMotif++ model of [4], the corresponding proli&pover all pairwise
preferences = 3 is modeled by a product over logistic functiongdtr) — p(8) so

thatF(r(Dn)) =P[m<r(

=1 ey ~ [ 1 exp(=vipi@) —p(8)))

a-f3
with p(a) corresponding to the sequence ranking funcigabove. This can thus
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be represented as a completely disconnected CDN where eactioh node cor-

responds tax(rs) = m and all pairwise object preferences are modeled as

being independent of one another. This is illustrated iufg® for an example with
four sequencesy, s, Sy, S5 to be ranked in which we represent the corresponding
joint CDF using two different CDNs.

wn
o
S
c
[e]
o+
c
=
[0]
a

Fig. 9 An example of an order graph over four nodes3,y, d corresponding to the ordering
o > B =y 0, with CDNs representing two different loss functions cepending to differ-
ent independence assumptions about pairwise preferéweseas the RankMotif++ method of
[4] corresponds to an unstructured learning method whishirass independence of preference
variables, STORMSeq models the dependencies betweemamreés by introducing connections
between preference variables in the corresponding CDN.

Settings for STORMSeq

We ran STORMSeq for 100 epochs, or passes through the tgadbiservations, us-
ing a stochastic gradients optimization method. The legrmte was settg = 0.1
with a decay rate of At at the end of each epo¢hIn order to provide regular-
ization on the CDN width parameter, we set a constraing < 1. In the case
where we learn a PSS, we enforce the constraints thisic, > 0V k,b and
SpMkp=1Vk=1,--- K. In the case where we learn weightswe set an addi-
tional L1-norm constraint ofjw||1 < 50. All computational runs were performed in
triplicate and the best optimum achieved on training datasedected for evaluation
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on test data using criteria described in the sections béldditional details on the
learning method are provided in [10].

Methods for ranking sequences bound by transcription fargto

Data was downloaded from the Supplementary Material secti¢3], which con-
sisted of measured intensitigg for a set of sequencels, € .}. The dataset
contained five experiments across two microarrdysaly 1 andArray 2) profiling
the binding of the transcription factors Cbfl, Ceh-22, OcRap1l, Zif268. We used
the array labeledrray 1as the source of our training data, and the probe sequences
from Array 2 as the source of our test data. We normalized the microantagsity
data in both sets by first shifting microarray intensitieststhat the minimum in-
tensity was equal to one, then applying a log-transformass in [4]. We labelled
the 250 probe sequences which had the highest measureslipts positives and
the 250 sequences with the lowest normalized intensitiesgatives. We then con-
structed the order graph over these 500 sequences baseéferepces assessed
using the criteria used by [4] where we compute the mediaolatesdeviatiorm of
the 500 normalized intensities and assedted 3 if yo > yg +30 and at least one of
Sa,Sg were labelled as positive sequences as described above avkem/0.6745,
where 06745 is the median absolute deviation of the standard normal

Using the above sequence ranking functimisy; M) for a given PSSM length
K, we ran STORMSeq and RankMotif++ using three random i@dlons each,
whereby we selected the model which maximized the Spearoraglation with the
training data, as per [4]. For each initialization, the PS8NMvas initialized to a set
of random positive values and then normalized so ¥l , = 1Vk=1,--- K.
The MatrixREDUCE, MDScan and Prego methods were run on #igitig data
as specified in [4], and the resulting PSSM models were salacsing the same
Spearman correlation metric as above. For all models, wed/#rfrom 7 to 13 and
selected the value ¢f which optimized the above Spearman correlation criteria.

Methods for ranking microRNA targets

We focused on the human genes in the let-7b transfectiorriexpet which A) had
3'UTR sequence data provided by Ensembl and B) were providtacdooth mRNA
expression and protein abundance data in 3,636 paired mithi&in expression
profiles obtained from cDNA microarray and mass-spectroyraetross brain, heart,
liver, lung and placenta tissue pools in mouse [16, 22]. Viekled a total of 799
human 3'UTR sequences to be scored. We then selected thee40@rees with
the lowest log-expression ratios as positives and labéliedother 399 genes as
negatives. To assess the out-of-sample predictive pediocmof our method, we
selected a random sample of 250 positive sequences foraining data and the
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remainder for the test data. Similarly, we selected 250 secgs from the negative
group for our training set and the rest for the test data. We tbrmed five indepen-
dent training/test splits in this fashion. Preferenceseviben assessed as described
above for the PBM data. Once we obtained the training anddegstsets, we ran
STORMSeq wittK = 7 on each of the training datasets and selected the best model
out of 3 random restarts via the Spearman correlation bettreelearned ranking
function scores and the rankings seen in the training data.

In conjunction with the above data, we used the expressterblecross brain,
heart, liver, lung and placenta tissue pools [1] with the mRMotein profiles men-
tioned above. Additionally, thAAG accessibility score was computed by the PITA
algorithm [15] using the mRNA sequences for each of the mmRNAs in the data
from [22] and using the mature mouse let-7b sequence forafautt algorithm set-
tings provided in [15].

We downloaded microRNA target predictions for the let-7lxmmRNA from
the Supplementary Data resources for the TargetScan [ZaPj17] and RNA22
[13] algorithms. The set of TargetScan predictions costdioth conserved and
non-conserved targets and the set of RNA22 targets corttaihstarget predicted
from 5’UTR and 3'UTR sequences. We mapped all predictiorieécabove mouse
mRNA and microRNA labels. Pairwise preference relatiopshiere established
for a given 3'UTR sequence by summing over microRNA targtet stores within
the given 3'UTR sequence and sorting scores. For a giverighi@d method, the
preferencen - B was established between two 3'UTRss, g if s had a higher
score tharsg and at least one oy, sz were labelled as positive sequences as de-
scribed above.

Assessing ranking performance

To assess predictive performance of any given ranking ndethe scored each node
a using the ranking functiop(a) learned by the method. Given the ordering ob-
tained fromp and given positive/negative labels for the nodes beingadnke can
then compute Precision and Recall as

Precision= P
~ TP+FP

TP

Recall= —————
eCAl= TPIEN

whereTP,FP,FN correspond to the number of true positives, false positaras
false negatives respectively.

We also used the Normalized Discounted Cumulative Gainprfietric, which
is commonly in use in information retrieval research. The@®accounts for the
fact that highly relevant sequences should be ranked highargiven method, so
more weight should be placed on correctly ranking highlgvaht sequences than
marginally relevant ones. The formula for computing the N®IOr truncation level
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n, or the number of top-ranking sequences, is

ND G( ) : v ( )
CG(n)=Z E 17
nJ:l Cj

wherer(j) is an observed label indicating the level of importance efshquence
(e.g.: amount of downregulation from a microRNA) afilis a constant to ensure
thatNDCG(n) = 1 for the perfect ranking, so that higher NDCG indicateseased
ability to predict the ordering of sequences. The weidlds---,c,} are an in-
creasing sequence of real-valued positive numbers whialv ak to penalize errors
made in the top of the ranked list whilst discounting erroeslmfor less relevant se-
quences. Here we chosg=l0og,(1+ j) Vj =1,--- ,n. The advantage of the NDCG
metric is that it does not assume that sequences are to sdieldas positive or neg-
ative and it accounts for both multiple label values and #wt that highly important
sequences should be ranked first. This contrasts with thefésea Under the ROC
Curve, or AUC, which weighs misranking errors equally reliess of where they
occur in a ranked list. The NDCG can be also seen as an appatimimio the cost
of experimentally validating or analyzing sequences atdpeof the list which are
not biologically relevant.

In the case of where we are scoring sequences bound by fifgistfactors, we
set the labels(j) to be the normalized array intensities, shifted to be nayatiee
and scaled to obtain a maximum label of 1. For the purposealfiating on let-7b
targets, we set the above relevance labels to be the nef@ghexpression-ratios
of each putative target, shifted to be non-negative an@&ddal obtain a maximum

label of 1.



